Town of Niverville Public Water System Operation Report 2024

The Town of Niverville strives to provide the highest quality drinking water in sufficient quantity to meet the needs of the residents. It is our goal to provide this water in a safe, cost-effective manner while remaining in compliance with all regulatory requirements governing the provision of potable water.

It is our belief that the public has a right to access information related to the potable water they consume. To that end the following report has been prepared for the Town of Niverville public water system.

Why do we treat our water?

We treat our water to ensure that safe and aesthetically pleasing potable water is supplied to our community. The Town of Niverville is committed to meeting and/or exceeding the water quality standards set by the province.

Where do we get our water from?

The raw water is currently obtained from two supply wells located one mile west of New Bothwell. The wells draw ground water from secured aquifers in the fractured limestone. Both wells were installed in 2017 and are both 200 mm in diameter. The first well has a total depth of 91.4m with a 300 mm welded black steel casing installed to a depth of 27.1 m. The second well has a total depth of 96.6 m with a 300 mm welded black steel casing installed to a depth of 27.1 m. The second wells were tested by Friesen Drillers Ltd. to each have an estimated discharge rate of 500 Imperial Gallons Per Minute (IGPM). The raw water from these two wells is pumped via 50Hp submersible pumps that travel 10.5 km to the water treatment plant via a 350 mm High-density polyethylene (HDPE) pipeline.

What is our treatment process?

Raw water is pumped from the fractured limestone aquifer to the water treatment plant. The raw water enters the building where an online turbidimeter monitors the turbidity (clarity) of the water before the water is split between the two treatment processes. The flow is split 50/50 with half of the water being directed to two sets of dual train reverse osmosis (RO) skids, while the other half is diverted to three biofilters.

Biofilter Treatment Process

The raw water that flows to the biofilters have online instrumentation (probes) which monitors pH, ORP, temperature, and dissolved oxygen of the water. After these probes, an air sparger is installed in the pipe. The air sparger is used to inject air into the water to increase the dissolved oxygen levels going to the biofilters. This air is important to ensure the good bacteria in each of the biofilters can survive and thrive. These bacteria are what treats the water. There are two large air compressors installed in the building, which feed compressed air to the air sparger. After the air sparger, the flow is directed to three biofilters which run in parallel. When the water plant calls to make water based on the treatment mode, automated valves open to allow the flow of water through the biofilters. Inside each biofilter are layers of different sized gravel and a filtralite material. The bottom third of each filter is layered with different sizes of gravel between 1" inch diameter down to 1/8" inch diameter. The larger sized gravel naturally sits on the bottom of the tank. After the gravel layer is the filtralite material. The filtralite is installed on top of the gravel to about two thirds high in the tank. The water makes up the remaining third of the filter. There are a couple different pipes installed in this gravel layer. One set of pipes is for the underdrain, while the other is for the air scour. The air scour piping is used during the biofilter backwash cycle. Air is injected through the air scour piping to mix up the material inside the filter. The underdrain piping collects the treated water which flows through the biofilter and is then directed to the treatment header. During the biofilter treatment, water is forced into the biofilter and down through the filtralite material which mainly removes iron and manganese from the water. This water is then collected into the underdrain pipe installed in the gravel layer. This treated water, which is now called filtrate, flows from the bottom of the filter to the treatment header. The filtrate coming out of each biofilter is again being monitored for pH, ORP, dissolved oxygen, and turbidity by online instrumentation.

Reverse Osmosis (RO) Treatment Process

The raw water is directed to one of the two reverse osmosis multi train units (RO MTU). The flow direction is dependant on which mode of treatment is being used. Raw water is dosed with an anti-scalant prior to entering the skid. Online instrumentation (probes) monitors conductivity, ORP, and temperature of the incoming water. The raw water then flows through a set of 1-micron prefilters which remove larger debris and particles (sand, silt etc.) from the water to help minimize debris from plugging the membrane filters. A booster pump then takes that water and increases the pressure to force the water through the reverse osmosis membranes. These membranes remove any particles and minerals from the water. The water that makes it through the membranes is now treated and is called permeate water. The water, metals, and minerals that do not make it through the membranes, that solution is called concentrate. The RO units have a typical recovery rate of about 80%. This means that 80% of the water being pushed through the membrane will come out as permeate while the remaining 20% will be concentrate. The permeate water has online instrumentation monitoring pH, conductivity, and turbidity before heading to the treatment header.

Treatment Header

The treatment header is where the biofilter filtrate, and the reverse osmosis permeate water meets before entering the reservoir. The RO permeate water is dosed with sodium hydroxide (caustic soda) to bring the pH level back up to about 7.40. The permeate water then goes through an internal static mixer, which mixes the chemical that was just added. The permeate water and filtrate water then combine, where an online probe monitors the pH level of the treated water that is mixing. This treated water is then injected with aqua mag blended phosphate which is a corrosion inhibitor to limit corrosion on various metal piping. It is then dosed with sodium hypochlorite (chlorine) for the final disinfection before entering the reservoir. Each of the chemical pumps dose a set amount of chemical based on flow. This means that the more water being produced, the higher the chemical will be injected. This is so the pumps can be used for each different mode of treatment. Each chemical is equipped with two chemical pumps which run in a Duty / Standby configuration. This means that if one of the two pumps breaks down, the other pump will take over.

Reservoirs

The Niverville water treatment plant has three, below grade reservoirs with a combined capacity of 3,500 m3 (3,500,000 litres). The size of storage allows the chlorine proper contact time with the water (minimum 20 minutes) to confirm proper disinfection is taken place. Each reservoir is split into two different cells. This gives the operators the ability to isolate specific cells to allow them to be taken offline for cleaning. Interconnection piping between each cell and reservoir allows the flow of water to be directed to bypass any of the cells. Below is the information on each of the three reservoirs.

Reservoir 1 (Cell 1&2 - 2007) – This reservoir has a 500,000 litre capacity Reservoir 2 (Cell 3&4 - 2010) – This reservoir has a 1,200,000 litre capacity Reservoir 3 (Cell 5&6 - 2023) – This reservoir has a 1,800,000 litre capacity

Why do we disinfect our water?

The final step in the treatment of safe water is disinfection. Disinfection is the selective destruction or inactivation of disease-causing organisms in water. The *Drinking Water Safety Act* and supporting regulations require that potable water be in contact with chlorine for a minimum of 20 minutes before it enters the distribution system. The Town uses sodium hypochlorite (chlorine) to disinfect our water. The provincial standards mandate that the Town maintains a minimum residual chlorine level of 0.5 mg/L leaving the water plant.

What is our water plant classification and who is certified?

The facility classification and operator certification fall under The Environmental Acts Water and Wastewater Facility Operators Regulations. Currently, the water treatment plant, and the

water distribution system are classified as a Class 2 facility. The Town of Niverville has the following operators available.

<u>Water Treatment</u> Class II – 2 Certified Operators Class I – 2 Certified Operators

Water Distribution Class II – 2 Certified Operators Class I – 2 Certified Operators

What is the 'distribution system'?

The water distribution system is the network of underground pipes used to carry the treated water from the water treatment facility to the homes & businesses within our community. We have both PVC (C-900) and High-density polyethylene (HDPE) piping through parts of the Town. The piping is interconnected (looped) to ensure that fresh safe potable water is continuously supplied. We carry out regular maintenance in the distribution system such as valve maintenance, hydrant flushing and fire hydrant testing in cooperation with the Town of Niverville Volunteer Fire Department.

Who do we serve water to?

The water distribution system is comprised of 1,486 service connections. All (100%) of the homes and businesses connected to the distribution system are metered.

Classification	Size	Number
Residential (Single / Multi)	5/8"	1,440
Residential (Multi)	1" - 3"	5
Commercial / Institutional	5/8"	23
Commercial / Institutional	3/4" - 3"	18
Total		1,486

What are the water rates?

The water rates for the Town of Niverville have not changed since July 2018. The current rate for 1,000 gallons of water is \$11.18. Customers will pay the applicable minimum charge set below which includes the water allowance as listed.

Meter Size	Water Included	Gallons	Customer	Water	Water Total
	1000 of Ratio		Service	Commodity	Quarterly
			Charge	Charge	Minimum
5/8 inch	1	3,000	\$7.37	\$33.54	\$40.91

3/4 inch	2	6,000	\$7.37	\$67.08	\$74.45
1 inch	4	12,000	\$7.37	\$134.16	\$141.53
1 1/2 inch	10	30,000	\$7.37	\$335.40	\$342.77
2 inch	25	75,000	\$7.37	\$838.50	\$845.87
3 inch	45	135,000	\$7.37	\$1,509.30	\$1,516.67

The Town has also submitted a request to the Public Utility Board for a rate increase to account for the new water treatment plant expansion that was put online in 2022.

Water Quality Standards

The Town's Operating license identifies that our public water system shall operate in a manner that achieves or exceed the quality/treatment standards specified in the table below.

Parameter	Quality Standard
Total Coliform	Less than one total coliform bacteria detectable per 100 mL in
	all treated and distribution water
E. Coli	Less than one E. Coli bacteria detectable per 100 mL in all
	treated and distribution water
Chlorine Residual	A free chlorine residual of at least 0.5 mg/L in water entering
	the distribution system following a minimum contact time of
	20 minutes.
	A free chlorine residual of at least 0.1 mg/L always at any
	point in the water distribution system
Arsenic	Less than or equal to 0.01 mg/L
Benzene	Less than or equal to 0.005 mg/L
Ethylbenzene	Less than or equal to 0.14 mg/L
Fluoride	Less than or equal to 1.5 mg/L
Lead	Less than or equal to 0.005 mg/L
Manganese	Less than or equal to 0.12 mg/L
Nitrate	Less than or equal to 45 mg/L measured as nitrate (10 mg/L
	measured as nitrogen)
Nitrite	Less than or equal to 3 mg/L measured as nitrite (1 mg/L
	measured as nitrogen)
Trichloroethylene	Less than or equal to 0.005 mg/L
Tetrachloroethylene	Less than or equal to 0.01 mg/L
Toluene	Less than or equal to 0.06 mg/L
Total Xylenes	Less than or equal to 0.09 mg/L
Uranium	Less than or equal to 0.02 mg/L

The parameters for total coliform and E. Coli are tested every two weeks.

The remaining parameters from our licence that require testing were completed on May 28, 2024. The Town is required to do this testing every three years.

The biweekly sample information, plus the full water analysis report can be found on the Town of Niverville website at <u>https://www.whereyoubelong.ca/town-services/financial-services/utilities/</u>

Parameter	Unit	Guide Limit	Guide Limit	Raw Water	Spruce Drive -	Distribution @ Mid
		#1	#2		Treated	Point
		(mg/L)	(mg/L)		Water	
Arsenic (As) *	μg/L		0.01	3.03	1.76	1.75
Benzene	mg/L		0.005	< 0.00050		
Ethylbenzene	mg/L	0.0016	0.14	< 0.00050		
Fluoride (F)	mg/L		1.5	0.853	0.445	
Lead (Pb) *	μg/L		0.005	< 0.050	< 0.050	0.291
Manganese (Mn) *	μg/L	0.02	0.12	7.70	2.36	1.64
Nitrate (as N)	mg/L		10	< 0.0050	0.125	
Nitrite (as N)	mg/L		1	< 0.0010	< 0.0010	
Trichloroethylene	mg/L		0.005	< 0.00050		
Tetrachloroethylene	mg/L		0.01	< 0.00050		
Toluene	mg/L	0.024	0.06	< 0.00050		
Total Xylenes	mg/L	0.02	0.09	< 0.0005 0		
Uranium *	μg/L		0.02	0.234	0.128	0.121

Below is a summary of the testing results for each parameter listed on our licence.

* Note – These measurements are displayed in microgram per litre ($\mu g/L$) instead of milligram per litre (mg/L). 1 mg/L is equal to 1000 $\mu g/L$.

Is our water tested? What for? When?

The Town's operating license identifies that our public water system shall ensure monitoring is completed as set out from the specified table below.

Water Quality Monitoring		
Parameter	Monitoring Requirement	
Bacteriological (total	Biweekly sampling program with each set of samples consisting	
coliform and E. coli)	of one raw, one treated, and a minimum of one distribution	
	sample.	
	Consecutive sample sets to be separated by at least 12 days	
Free Chlorine (treated	One sample per day of water entering the distribution system	
water)	following at least 20 minutes of contact time	
Free Chlorine (distribution	At the same times and location(s) as bacteriological distribution	
system)	system sampling	
Total Chlorine (treated	One sample per day of water entering the distribution system	
water)	following at least 20 minutes of contact time	

Total Chlorine	At the same times and location(s) as bacteriological distribution
(distribution system)	system sampling
Free Ammonia (treated	One sample per week of water entering the distribution system
water)	
General Chemistry	One raw and one treated water sample once every three years
(parameter list provided by	
Office of Drinking Water)	
Total Metals (distribution	One sample taken at the same time(s) as General Chemistry
system)	sampling at a mid-point in the distribution system
Lead	As per the instructions of the drinking water officer
	Residential Lead Monitoring Program starting in Spring 2025.
	The number of samples needed per year is based on the
	population served but currently set at 20 samples per year with
	2/3 of the samples taken between June and October
Manganese	Monitoring included in the General Chemical and Total Metals
	analysis
Other Parameters	As per the instructions of the drinking water officer

Residential Lead Monitoring Program

In 2019, Health Canada updated the national guideline for lead in drinking water. The maximum acceptable concentration (MAC) for total lead in drinking water was lowered from 0.010 mg/L to 0.005 mg/L with the sample taken from a resident's kitchen tap. This guideline was adopted by Manitoba as the new standard in 2020. This implementation was put into affect for the Town of Niverville in November 2024. The first samples for this program will be taken in Spring 2025.

For more information on the Lead Monitoring Program, please visit our website at <u>https://www.whereyoubelong.ca/town-services/financial-services/utilities/</u>

What do we have in place to alert Operations Staff to water emergencies?

The Town has an operator on-call for sewer & water emergencies 24 hours a day / 7 days a week. This operator can access the water plants Supervisory Control and Data Acquisition (SCADA) system via their smart phone or laptop. Operators can check on the status of pumps, valves, sensors, flows, and chemical dosing. All equipment in the water plant has alarm parameters set specifically for that piece of equipment. If any equipment runs outside of those set parameters, an alarm will go off. Once an alarm is triggered, a signal is sent to an auto dialer which will call through a list of preset operator's cell phone numbers until the alarm is acknowledged. The operator can then log on to the SCADA system to determine the cause of the alarm. This allows operators to diagnose issues more efficiently and effectively.

Disinfection summarization report for 2024

Below is a summary of the disinfection sampling that was completed for the year of 2024. All of this information can be found in greater detail starting on page 20 in this report.

Month	Handheld	Handheld	Automated	Automated
	Disinfection	Disinfection Samples	Disinfection	Disinfection Samples
	Samples Taken	Below Standard	Samples Taken	Below Standard
January	31	0	8928	0
February	29	0	8352	0
March	31	0	8915	0
April	30	0	8640	0
May	31	0	8928	0
June	30	0	8352	0
July	31	0	8928	0
August	31	0	8928	0
September	30	0	8640	0
October	31	0	8928	0
November	30	0	8640	29
December	31	0	8928	21
Total	366	0	105107	50

Were there any emergencies, regulatory compliance issues or other operational issues to report for 2024?

On June 17, 2024, the automated records for our regulatory compliance reports were not populating data correctly. Because of this, no chlorine data was being recorded for that day.

On November 7, 2024, our chlorine analyzer was cleaned and calibrated. This caused a couple zero readings on our regulatory compliance reports.

On November 17, 2024, we had a chlorine fitting crack and break causing chlorine to not enter the distribution header. This caused our chlorine level to drop below 0.50 mg/L for a short period of time. We replaced the broken fitting and added chlorine directly to the reservoir to bring the level back above 0.50 mg/L.

On December 24, 2024, we shut down flow to the chlorine analyzer to install a backflow prevention device on the water treatment plant's domestic supply line feeding the building. This was a requirement from the Office of Drinking Water after our engineered assessment.

Were there any drinking water safety orders issued?

In the reporting period, no Drinking Water Safety Orders were issued to the Town of Niverville's water treatment plant.

Were there any boil water advisories?

In the reporting period, no boil water advisories were issued to the Town of Niverville's water treatment plant.

Were there any warnings issued, fines, or charges laid?

In the reporting period, no warnings or fines were issued to the Town of Niverville's water treatment plant.

Were there any major expenses incurred in 2024?

1. One of the variable frequency drives (VFD) on a well pump was replaced due to constant alarm faults causing the well pump to be unreliable. This cost was still partially covered under warranty.

Cost: \$20,000

Future system expansion or expenses expected?

1. Research into a 3rd raw water supply well to build redundancy into the raw water supply for the Town of Niverville Treatment Plant.

Who can we call with questions or concerns regarding our drinking water?

All calls regarding water (emergency or not), please call the Town of Niverville directory (204)-388-4600 ext.1111 and leave a message. Staff will listen to the message within a reasonable amount of time and respond accordingly.

How can you find out about this report?

This report will be available on or before March 31 of each year. The Town will also post the link to this report on our Facebook page once available. The link for this report can be found on the Towns website under the resources section at <u>https://www.whereyoubelong.ca/town-services/financial-services/utilities/</u>

Paper copies are available upon request at the Town Office. If you wish to leave an email (non-emergency) please send it to *andrew.rempel@whereyoubelong.ca*

Water and Wastewater Facility Operators Certification Program

This is to certify that the

Spruce Drive Water Plant

owned by

Town of Niverville

has been classified as a

Class 2 Water Treatment Facility

in accordance with the Water and Wastewater Facility Operators Regulation under The Environment Act.

Dated at Winnipeg, Manitoba

this 30th day of May 2016.

Certificate No.:

2016-010

Manitoba Sustainable Development

Certificate is the property of Manitoba Sustainable Development and must be surrendered upon request.

Water and Wastewater Facility Operators Certification Program

This is to certify that the

Spruce Drive Water Distribution

owned by

Town of Niverville

has been classified as a

Class 2 Water Distribution Facility

in accordance with the Water and Wastewater Facility Operators Regulation under The Environment Act.

Dated at Winnipeg, Manitoba

this 30th day of May 2016.

Certificate No.:

2016-011

Tracey 13

Manitoba Sustainable Development

Certificate is the property of Manitoba Sustainable Development and must be surrendered upon request.

Office of Drinking Water 1007 Century Street, Winnipeg, Manitoba R3H 0W4

OPERATING LICENCE FOR A PUBLIC WATER SYSTEM

LICENCE NUMBER: PWS-11-485-02

THE DRINKING WATER SAFETY ACT CHAPTER D101, C.C.S.M.

WATER SYSTEM CODE: 151.25

OPERATION ID: 42862

EFFECTIVE DATE: DECEMBER 1, 2021

EXPIRY DATE: FEBRUARY 28, 2026

In accordance with The Drinking Water Safety Act, this operating licence is issued pursuant to subsection 8(1) to:

TOWN OF NIVERVILLE: "THE LICENSEE"

FOR THE OPERATION OF THE **NIVERVILLE SPRUCE DRIVE PUBLIC WATER SYSTEM**, WHICH INCLUDES SECURE WELLS, TREATMENT FACILITIES, WATER STORAGE RESERVOIRS, AND DISTRIBUTION LINES, SUBJECT TO THE ATTACHED TERMS AND CONDITIONS.

THIS LICENCE DOES NOT AFFECT THE LICENSEE'S OBLIGATIONS WITH RESPECT TO COMPLIANCE WITH ALL APPLICABLE MUNICIPAL, PROVINCIAL, AND FEDERAL LEGISLATION. THIS LICENCE SUPERSEDES ALL PREVIOUS LICENCES FOR THIS PUBLIC WATER SYSTEM.

DATE: November 22, 2021

Siobhan Digitally signed by Siobhan Burland Ross Burland Ross Date: 2021.11.22 08:43:19 Siobhan Burland Ross, P.Eng. A/Director

TERMS AND CONDITIONS

1. GENERAL

- 1.1. The Licensee shall operate the public water system in accordance with all applicable requirements of The Drinking Water Safety Act and its regulations, and the requirements of this licence. In the event that specific terms and conditions of this licence imposed under the authority of subsection 8(3) of the Act exceed the general requirements of the Act and regulations, the specific requirements of this licence shall apply.
- 1.2. The Licensee shall obtain approval from the Office of Drinking Water prior to making any significant alterations to the water source, the water treatment process, the water storage facilities, or the water distribution system.
- 1.3. This licence may be amended by the director where, in the opinion of the director, an amendment is necessary and the amendment will not negatively impact the safety of water obtained from the water system, or effective environmental management.
- 1.4. The Licensee may request an amendment to this licence by submitting an amendment application to the Office of Drinking Water.
- 1.5. This licence may be suspended or cancelled by the director for any of the reasons identified in Section 11 of Manitoba Regulation 40/2007, Drinking Water Safety Regulation or due to a failure to comply with any term or condition of this licence.
- 1.6. The Licensee shall provide written notice to the Office of Drinking Water of any change in ownership of the water system within seven days of the transfer of ownership.
- 1.7. The Licensee shall provide written notice to the Office of Drinking Water of any changes in the operational status of the water system, such as a permanent cessation of service, or changing the length of service from year-round to seasonal or the opposite.
- 1.8. The director of the Office of Drinking Water, medical officer of health or drinking water officer may enter any water system facility as necessary to carry out the provisions of The Drinking Water Safety Act and its regulations.
- 1.9. The Licensee shall post a copy of the first page of this licence at the water treatment facility.
- 1.10. The Licensee shall keep a copy of this licence in its entirety at a location established by the drinking water officer and ensure all operators are familiar with its terms and conditions.
- 1.11. The Licensee shall apply for renewal of this licence at least 60 days prior to its expiry.

2. OPERATION - GENERAL

- 2.1. The Licensee shall operate all water system facilities, control systems and equipment as efficiently as possible, inspect them on a regular basis, maintain them in good working order, and ensure that the water system is protected from the risks associated with cross-contamination.
- 2.2. The Licensee shall ensure that all chemicals and components that may come into contact with potable water are certified safe for potable water use through AWWA Standards, ANSI/NSF Standard 60 or 61, Health Canada, or other standards acceptable to the director.
- 2.3. No alternate water source shall be brought into service without the consent of the drinking water officer and the maintenance of adequate cross connection control between the alternate source and the primary source.
- 2.4. The Licensee shall have re-assessments of the water system infrastructure and water supply sources completed by a qualified person, who is not an employee of the water system, in accordance with assessment checklist GW by March 1, 2024, and every five years thereafter. The Licensee may instead have the assessment completed by a qualified professional engineer, who is not an employee of the water system, in accordance with terms of reference for engineering assessments.
- 2.5. The Licensee shall, upon request from the Office of Drinking Water, submit or resubmit a compliance plan, in a form satisfactory to the director, to address any noncompliance issues identified at the time.

3. **OPERATION - EMERGENCIES**

- 3.1. The Licensee shall ensure that disinfection is undertaken following construction, repair or maintenance activities on the water system, in accordance with applicable AWWA standards, or Manitoba Water Services Board specifications, or any other standards approved by the director. A copy of all associated test results must be kept available for review by the Office of Drinking Water for a minimum of 24 months.
- 3.2. The Licensee shall ensure that all equipment used for disinfection is maintained in effective working order and keep available for immediate use all spare parts and chemical supplies as may be necessary to ensure continuous disinfection, including a spare disinfection unit, if necessary.
- 3.3. The Licensee shall immediately notify the Office of Drinking Water of any condition that may affect the ability of the water system to produce or deliver safe drinking water including but not limited to treatment upsets or bypass conditions, contamination of the source water or treated water, a disinfection system failure, or a distribution system failure.
- 3.4. If a medical officer of health, the director of the Office of Drinking Water, or a drinking water officer issues a water advisory on the water system, the Licensee shall provide notice of the advisory to all water users in accordance with the advisory notification plan or by a method acceptable to the issuer.

4. WATER QUALITY/TREATMENT STANDARDS

4.1. The Licensee shall operate the water system in a manner that achieves the water quality/treatment standards specified in Table 1, as determined through the monitoring requirements specified in Table 2:

Table 1:	Water Qualit	y/Treatment	Standards
----------	--------------	-------------	-----------

Parameter	Quality Standard
Total coliform	Less than one total coliform bacteria detectable per 100 mL in all treated and distributed water
E. coli	Less than one <i>E. coli</i> bacteria detectable per 100 mL in all treated and distributed water
Chlorine Residual	A free chlorine residual of at least 0.5 mg/L in water entering the distribution system following a minimum contact time of 20 minutes A free chlorine residual of at least 0.1 mg/L at all times at any point in the water distribution system
Arsenic	Less than or equal to 0.01 mg/L
Benzene	Less than or equal to 0.005 mg/L
Ethylbenzene	Less than or equal to 0.14 mg/L
Fluoride	Less than or equal to 1.5 mg/L
Lead	Less than or equal to 0.005 mg/L
Manganese	Less than or equal to 0.12 mg/L
Nitrate	Less than or equal to 45 mg/L measured as nitrate (10 mg/L measured as nitrogen)
Nitrite	Less than or equal to 3 mg/L measured as nitrite (1 mg/L measured as nitrogen)
Trichloroethylene	Less than or equal to 0.005 mg/L
Tetrachloroethylene	Less than or equal to 0.01 mg/L
Toluene	Less than or equal to 0.06 mg/L
Total Xylenes	Less than or equal to 0.09 mg/L
Uranium	Less than or equal to 0.02 mg/L

- 4.2. If a bacteriological standard is not met, the Licensee shall immediately undertake the applicable corrective actions as listed in "Schedule A" of Manitoba Regulation 41/2007, Drinking Water Quality Standards Regulation.
- 4.3. If a microbial, chemical, radiological, or physical standard is not met, the Licensee shall immediately undertake the applicable corrective actions specified in "Schedule C" of Manitoba Regulation 41/2007, the Drinking Water Quality Standards Regulation.
- 4.4. The Licensee shall maintain in effective working order chlorination and treated water storage equipment and controls designed to achieve a minimum of 20 minutes of chlorine contact time prior to water entering the distribution system.

5. WATER QUALITY MONITORING

5.1.	The Licensee shall	l ensure monitoring	is completed a	s set out in Table 2.
••••				

Table 2: Monitoring Schedule

Parameter	Monitoring Requirement
Bacteriological (total coliform and <i>E.</i> <i>coli</i>)	Biweekly sampling program with each set of samples consisting of one raw, one treated, and a minimum of one distribution sample
Free Chlorine (treated water)	One sample per day of water entering the distribution system following at least 20 minutes of contact time
Free Chlorine (distribution system)	At the same times and location(s) as bacteriological distribution system sampling
Total Chlorine (treated water)	One sample per day of water entering the distribution system following at least 20 minutes of contact time
Total Chlorine (distribution system)	At the same times and location(s) as bacteriological distribution system sampling
Free Ammonia (treated water)	One sample per week of water entering the distribution system
General Chemistry (parameter list provided by Office of Drinking Water)	One raw and one treated water sample once every three years
Total Metals	One sample taken at the same time(s) as General Chemistry sampling at
(distribution system)	a mid-point in the distribution system
Lead	As per the instructions of the drinking water officer
Manganese	Monitoring included in the General Chemical and Total Metals analysis
Other Parameters	As per the instructions of the drinking water officer

- 5.2. The Licensee shall ensure that an accredited laboratory, as specified in section 35 of Manitoba Regulation 40/2007 the Drinking Water Safety Regulation, undertake the following analysis required in Table 2:
 - a) bacteriological (total coliform and E. coli)
 - b) general chemistry
 - c) manganese
 - d) total metals
 - e) any other parameter required by the drinking water officer

and that all samples are collected, handled, and submitted in a manner that is satisfactory to the accredited laboratory.

- 5.3. The Licensee shall ensure that parameters listed in Table 2 but not specified in clause 5.2 are measured utilizing certified water quality monitoring equipment and methods approved by the latest edition of *Standard Methods for the Examination of Water and Wastewater* published jointly by the American Public Health Association, the American Water Works Association and the Water Environment Federation.
- 5.4. The Licensee shall ensure that all water quality monitoring equipment is properly maintained and calibrated by a qualified person according to manufacturer recommendations and that records are maintained to that effect.
- 5.5. The Licensee shall ensure that sampling within the distribution system takes place at varied locations acceptable to the drinking water officer.

6. RECORD-KEEPING AND REPORTING

- 6.1. The Licensee shall maintain in a secure location all construction drawings for the life of the water system components.
- 6.2. The Licensee shall retain in chronological order for a minimum of 24 months all information specified in subsection 34(2) of Manitoba Regulation 40/2007, Drinking Water Safety Regulation.
- 6.3. The Licensee shall ensure the information identified in clause 6.2 is available for inspection by any member of the public during normal business hours at the office of the water supplier or at a location convenient to the users of the system.
- 6.4. The Licensee shall record disinfectant residual measurements on the monthly disinfection report or other forms satisfactory to the director.
- 6.5. The Licensee shall record other measurements as specified in *Table 2: Monitoring Schedule* on the monthly report forms or other forms satisfactory to the director.
- 6.6. The Licensee shall keep one copy of all monthly report forms required in this licence, and forward the original copy to the drinking water officer within seven days after the end of each calendar month.
- 6.7. The Licensee shall record all distribution system measurements specified in *Table 2: Monitoring Schedule* on the chain of custody form (laboratory submission form) which accompanies the bacteriological sample bottles to the laboratory.
- 6.8. The Licensee shall ensure that water metering devices at the water treatment plant or storage reservoir are maintained in good working order and that flow meter readings are recorded on a daily basis and such records are made available for inspection by a drinking water officer.
- 6.9. The Licensee shall submit an annual report to the director by March 31st of each year on the operation of the water system in the immediately preceding calendar year. The report shall include the information as set out in subsection 32(2) of Manitoba Regulation 40/2007, Drinking Water Safety Regulation.
- 6.10. The Licensee shall inform the public, in a form satisfactory to the director, when an annual report has been prepared and identify how a free copy can be obtained.
- 6.11. The Licensee shall make a copy of each annual report available to the public at no charge on an internet website within two weeks of the issuance of the report, unless otherwise approved by the director. The annual report shall remain available to the public for at least one year.
- 6.12. The Licensee shall maintain and submit an advisory notification plan to the drinking water officer by May 1st of each year. The plan must include a detailed description of communication tools and methods to be used to notify the public of a drinking water emergency, considering key contacts, fan-outs, critical customers, susceptible or difficult-to-reach sub-groups, and template notices where applicable.

Ammonia

(mg/L)

0.00

onthly Chlorination Report

Nater System Name:	Spruce Drive	WTP	Water System Code:	151.25

Meturs

Month: January Year: 2024 Type of Measurement Device: Hach DR 890

Other Operators (Print): Anchew Rengel Operator-in-charge (Print): Ryan Dyck (M3)

Daily Consumption Units:

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

Data	Time	Time		ls (mg/L)	Daily
Date	Time	muais	Free	Total	Consumption
1	10:0263	, KP	1.06	1.24	220
2	7:20an	AR	1.03	1.22	632
3	7:15cm	AR	1.04	1.24	654
4	7:21am	AR	1.02	1.21	668
5	7:33an	AR	0.91	1.12	688
6	8:420m	SK	0-93	1.11	643
7	7:55am	12	0.84/1	6.75	665
8	8:35an	JK	0.96	1.13	848
9-	9:06an	AR	1.00	1.18	684
10	7:1Sam	AR	0.97	1.17	574
	9:36am	AR	1.05	1.25	688
12	8:39an	AR	1.08	1.27	642
13	6:58ar	rike	1.09	1.29	555
14	7:04an	1168	1.07	1.26	736
15	7:20an	AR	1.02	1.20	826
16	8:12an	AR	1.07	1.25	719

Date	Time	Initiale	Residua	ls (mg/L)	Daily
Date	Time	minais	Free	Total	Consumption
17	7:220m	AR	0.99	1.21	631
18	7:17an	AR	1.08	1,27	686
19	8.27an	AR	1.06	1.26	711
20	7:03am	SK	.04	1.20 %	568
21	6:55	MV	1.07	1.22	707
22	7:40 am	AR	1.09	1.32	818
23	9:34an	AR	1.19	1.40	691
24	7:18am	AR	1.20	1.42	606
25	7:25m	AR	1.11	1.34	666
26	7:25am	AR	1.20	1.39	671
27	7:052m	SK	1.24	1.40	Ce44
28	2:05pm	KE	1.08	1.31	732
29	7:15 am	AR	1.10	1.33	765
30	7:19cm	AR	1.10	1.28	650
31	7:14am	AR	1.06	1.29	645
		sumption	20.963		

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials
2	7:35am	AR	0.00	16	9:30m	AR	0.00	1	30	7:32m	AR
9	9:21cm	4R	0.00	23	8:50an	AR	0.01				

Residuals at Distribution Sample Locations

Date	ate Time Initials Location		Residuals (mg/		
Date	Time	muais	Location	Free	Total
9	8:52m	AR	309 Bronstone Drive	0.78	0.88
23	8:17an	AR	827 Turberry Cove	0.89	1.00
nitt	ed by (Pr	rint): _	ndrew Rempel	S	ignature

an 7 Signature:

Water System Name: Spruce Drive WTP Water System Code: 151.25
Month: Fichwary Year: 2024 Type of Measurement Device: Hach DR 890
Operator-in-charge (Print): Ryon Dyck Other Operators (Print): Andrew Rempel
Daily Consumption Units: Cubic Meter (M3)

			Residual	s (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
1	7:19 am	AR	1.09	1.29	661
2	6:19am	AR	1.02	1.25	629
3	6:330m	SK	0,99	1.7	763
4	7:20	MV	.06	1.23	642
5	9:43am	AR	1.02	1.22	886
6	6:15am	AR	1.09	1.28	595
7	7:49an	AR	1.08	1.33	724
8	7:12an	AR	1.06	1.28	652
9	7:18am	JK	1.11	1.30	663
10	8:472m	SK	_05	1.22	687
	7:09	MV	0.97	1.15	661
12	7:15an	AR	1.05	1,22	807
13	7:17cm	AR	0.94	1.17	667
14	7:20cm	AR	0.94	1.11	658
15	7:17am	AR	1.03	1.23	654
16	7:2000	AR	1.01	1.27	681

Flow Meter for Daily Consumption: (circle choice) Raw [reated No Metering

D	-	luitiele.	Residual	s (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
17	7:05am	SK	1.01	1.10	623
18	6:57an	2169	1.05	1.22	698
19	350 pm	MV	0.76	0.90	1022
20	7:40am	AR	1.08	1.26	410
21	7:18an	AR	1.03	1.25	613
22	7:17cm	AR	1.00	1.20	635
23	7:16cm	AR	0.95	1.13	636
24	7:10am	5K	0.85	0.94	6004
25	750am	M V	0.66	078	723
26	8:05an	AR	0.64	0.78	807
27	7:27am	JK	0.66	0.81	601
28	7:18an	AR	0.77	0.94	656
29	7:16an	AR	0.83	1.00	652
30					
31					
					10 710

Total Monthly Consumption 19,710

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)
6	9:05an	AR	0.01	20	8:00ar	AR	0.00					
13	7:3 kim	AR	0.00	27	T: 40 am	JK	0.00	-				

Residuals at Distribution Sample Locations

				Residuals (mg/L)			
Date	Time	Initials	Location	Free	Total		
6	8:40m	AR	17 Gullane Straet	0.94	1.08		
20	7:12m	AR	329 Bronstone Drive	1.01	1.14		
nit	ted by (P	rint):	Indrew Rempel		Signature:		

Signature: And Amm

Water System Name: <u>Spruce Dr UTP</u> Water System Code: <u>151.25</u>
Month: <u>March</u> Year: <u>2024</u> Type of Measurement Device: <u>Hach DR890</u>
Operator-in-charge (Print): <u>Ryon Dyck</u> Other Operators (Print): <u>Andrew Rempel</u>
Daily Consumption Units: Cubic Meter

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

	-		Residual	s (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
1	7:15cm	AR	0.98	1.16	630
2	7:07	SK	1.00	1.20	594
3	8 10	MV	0.09	1.15.	723
4	7:40 am	JK	1.01	1.24	742
5	8:05	JK	1.06	1.23	699
6	7:22 am	JK	1.03	1.21	590
7	9:43am	JK	1.14	1.34	720
8	6:10 am	JK	1.22	1.43.	498
9	9:1800	SK	1.35	1.54	722
10	8:04	MV -	1.35	1.61	606.
	7:24am	AR	1.33	1.57	756
12	7:14cm	AR	1.34	1,56	638
13	7:16am	AR	1.27	1.51	636
14	7:19 an	AR	1.26	1.47	655
15	7: SSam	AR	1.23	1.47	668
16	9 Odam	SK	1.10	1.32	665

Dete	T 1	Initiala	Residual	s (mg/L)	Daily
Date	Time	initiais	Free	Total	Consumption
17	325 pm	MV	1.24	1.46	1005
18	7:17am	AR	1.22	1.45	443
19	7:45cm	AR	1.1/	1.33	677
20	7:12am	AR	1.19	1.42	637
21	7:16cm	AR	1.22	1.44	679
22	7:18am	AR	1.23	1.44	648
23	9:00am	SK	1.10	1.25	671
24	3'000	KE	1.25	1.43	946.
25	7:13am	AR	1.11	1.34	422
26	7:13an	AR	1.18	1.40	657
27	8:08cm	AR	1.16	1.34	660
28	10:39an	AR	1.13	1.34	710
29	8:28 am	JK	1.14	1.35	515
30	11:32/0m	KP	1.74	1:32	787
31	812 am	MV	1 00	1.19	510
			Ionthly Cor	sumption	20,509

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)
5	8:18am	JK	0.00		19	8:02cm	AR	0.00					·····
12	7:30an	AR	0.00	2	26	7:21an	AR	0.00	-			. •	-

Residuals at Distribution Sample Locations

alan ar an ar a Ar an ar a		Initials		Residuals (mg/L)			
Date	Time	Initials	Location	Free	Total		
.5	7:45am	JK	175 Breckenridge	1.01	1.19		
19	7:26cm	AR	810 Turnberry Cove	0.92	0.94		
		<i></i>					
	×						
mit	ted by (Pi	rint): 🖡	Indrew Rempel		Signature:		

in Signature:

Water System Name: <u>Spruce Dr WTP</u> Water System Code: <u>151.25</u>	
Month: <u>April</u> Year: <u>2024</u> Type of Measurement Device: <u>Hach DR890</u>	_
Operator-in-charge (Print): Ryan Dyce Other Operators (Print): Anches Renpel	
Daily Consumption Units: Cubic Meters	

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

Dete	-	lu liti a la	Residua	ls (mg/L)	Daily
Date	Time	initials	Free	Total	Consumption
1	7:30am	AR	1.09	1.30	734
2	7:40am	AR	1.06	1.21	736
3	7:12am	AR	1.04	1.25	671
4	7:11cm	AR	1.06	1.24	690
5	7:20am	JK	1.05	1.22	680
6	b:san	$h k \epsilon$	1.13	121	677
7	6:50am	K9	1.02	1.15	709
8	7:14am	AR	0.98	1.16	817
9	7:13am	ÅR	1.04	1.16	699
10	7:14am	AR	0.96	1.13	666
	7:14 cm	AR	0.93	1.13	677
12	7:16am	AR	0.94	1.11	685
13	7:03am	SK	0.93	1.09	639
14	7:35	MV	0.94	1.08	740
15	7:15am	AR	0.99	1.17	772
16	7:30an	AR	1.14	1.21	697

Dete	T 1	lu Hiele	Residua	ls (mg/L)	Daily
Date	Time	initiais	Free	Total	Consumption
17	7:18an	AR	1.02	1.22	636
18	7:12 cm	AR	0.98	1.19	665
19	7:18cm	AR	1.00	1.20	654
20	7:03an	171	0.95	1.15	627
21	7:10	MV	0.94	1.13	702
22	7:130n	AR	0.98	1.13	785
23	7.13am	AR	0.94	1.12	695
24	7:16am	AR	0.93	1.10	666
25	7:12an	AR	0.94	1.12	664
26	7:53an	AR	0.91	1.08	705
27	7:082m	SK	0.84	1-01	647
28	7:15am	MV`	0.89	1.1D	753
29	7:15an	AR	1.08	1.25	818
30	7:40m	AR	1.22	1.32	744
31					
		Total N	Ionthly Cor	sumption	21,000

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
2	7:57an	AR	0.00		16	7:45an	AR	0.00	30	7:56cm	AR	0.00
0	7:29am	AR	0.00	1	23	7:30am	AR	0.00				

Residuals at Distribution Sample Locations

-				Residuals (mg/L)						
Date	Time	Initials	Location	Free	Total					
2	7:15m	AR	329 Bronstone Drive	1.04	1.10					
16	7:15cm	AR	425-6th Ave Sauch	0.98	1.15					
30	7:25an	AR	33 Prestwick Street	0.85	0.96					
4	~									
simplify Andrew Rom 201 Simplify										

- /

mitted by (Print): <u>Andrew Rempe</u>

Maar Signature:

Water System Name: <u>Spruce Drive WTP</u> Water System Code: <u>151.25</u>
Month: <u>May</u> Year: <u>2024</u> Type of Measurement Device: <u>Hach DR890</u>
Operator-in-charge (Print): Ryan Dyck Other Operators (Print): Andrey Removel
Daily Consumption Units: M3

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

Defe	Time	lu iti ala	Residua	ls (mg/L)	Daily
Date	Time	initials	Free	Total	Consumption
1	7:18am	JK	1.12	1.32	649
2	7:28am	JK	1.10	1.29	674
3	7:17am	JK	1.09	1.28	660
4	7:32an	SK	1.09	1.27	1037
5	740	MV	1.12	126	774
6	7.150m	AR	1.02	1.22	899'
7	7:16an	AR	0.99	1,20	727
8	7:15an	AR	0.98	1.19	677
9	7:16an	AR	1.01	1.20	756
10	7:13an	AR	0.99	1.19	792
	7:37am	SN	1.01	1.16	701
12	2:5800	KE	0.95	1.15	302
13	7:14an	AR	0.94	1.14	541
14	8:00an	AR	0.88	1.08	796
15	7:13am	AR	0.91	1.12	612
16	7:16an	AR	0.96	1.14	698

Dete	Time	Initiala	Residual	ls (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
17	7:16am	AR	0.93	1.14	663
18	8:10an	KE	1.03	6.76	673
19	8:07	MV	1.09	1.00	652
20	1:30	NN	1.09	1.23	931
21	7:17am	JK	1.09	1.32	695
22	7:19am	JK	1.12	1.32	786
23	7:2dam	JK	1.08	1.27	721
24	7: 17am	AR	1.10	1.27	695
25	7:47am	SK	1.15	1.24	597
26	7:53ah	nKE	1.08	1.21	685
27	7:20m	AR	0.99	1,19	825
28	7:34am	JK	0.91	1.12	718
29	7:30am	JK	0.99	1.18	696
30	7:40am	JK	1.05	1.24	715
31	7:30 am	JK	1.05	1.21	660
		Total M	Ionthly Con	sumption	22,607

Ammonia

(mg/L)

Ammonia in Treated Water

Date	e Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials
7	7:30an	AR	0.00	22	7:36am	JK	0.00			
14	8:22m	AR	0.00	28	7:47am	JK	0.00			

Residuals at Distribution Sample Locations

Dete			Location	Residuals (mg/L)			
Date	Time	initials	Location	Free	Total		
14	7:42in	AR	329 Bronstone Drive	0.88	1.02		
28	7:10 cm	JK	425 6th Ave	0.98	1.17		
			£				
mitt	mitted by (Print): Andrew Rempel Signature:						

Signature: _____

Water System Name: <u>Spruce Drive WTP</u> Water System Code: <u>151.25</u>
Month: June Year: 2024 Type of Measurement Device: Hach DR 890
Operator-in-charge (Print): <u>Ryan Dyck</u> Other Operators (Print): <u>Andrew Rempel</u>
Daily Consumption Units:

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

D		lo titala	Residua	ls (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
1	0:43	SK	1.09	1.25	762
2	300 pm	N	6.74	0.15	1031
3	7:20cm	JK	1.07	1.27	499
4	7:20 am	JK	1.08	1.23	700
5	7:25am	JK	1.03	1.27	696
6	7:20 am	JK	1.06	1.28	673
7	7:35an	1B	1.04	1.37	737
8	7:16 am	JB	1,10	1.28	658
9	6:19am	JH	1.09	1.27	805
10	7.17 an	AR	1.08	1.32	963
	8:00 am	JK	1.12	1.33	832
12	7:19am	JK	1.10	1.31	726
13	7:18am	TK	1.09	1.32	740
14	7:17gm	ĂR	1.10	1.31	753
15	6.20am	JB	1.07	1.30	766
16	6:110	174	0.99	1.20	760

Dete	Time	Initiala	Residual	s (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
17	7:22am	JK	1.04	1.26	828
18	7:1San	AIZ	1.04	1.26	747
19	7:17am	AR	1.03	1.24	676
20	7:15 am	JK	1.04	1.19	722
21	7:17am	JK	0.99	1.19	763
22	6:11 am	JB	1.00	1.22	763
23	6:53am	LS	1.07	1.15	821
24	7:15am	JK	1.02	1.18	939
25	7:42 am	JK	0.96	1.16	854
26	7:11am	AR	0.99	1.19	778
27	7:16am	JK	1.01	1.18	748
28	7:17am	JK	0.98	1.18	803
29	7:09am	18	0,93	1.09	618
30	6:35an	TH	1.01	1,16	650
31					
					2.0.11

Total Monthly Consumption

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
4	7:35am	JK	0.00		18	7:27am	AR	0.00				
11	8:18am	JK	0.01	(25	8:00 am	JK	0.00				

Residuals at Distribution Sample Locations

	_			Residua	ls (mg/L)
Date	Time	Initials	Location	Free	Total
11	7:30an	JK	808 Tumberry	0.87	0.95
25	7:15am	JK	801 Turnberry	0.96	1.09
			1		
				9	
	1				
mitt	ted by (Pr	rint): A	ndrew Rempel		Signature:

Signature: Arcm

Water System Name: Spruce Drive WTP	Water System Code: 151.25
Month: July Year: 2024 Type of Meas	surement Device: Hach DR890
Operator-in-charge (Print): <u>Ruan Dyck</u>	Other Operators (Print): Andrew Rempel
Daily Consumption Units: <u>M</u> ³	

Flow Meter for Daily Consumption: (circle choice) Raw (Treated No Metering

		la Mala	Residua	ls (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
1	10:26m	JH	0.95	1.13	677
2	7:25am	JK	0.94	1.11	740
3	7:090M	LS	0.84	1.08	699
4	7:12cm	AR	0.95	1.13	683
5	7:09am	AR	0.95	1.16	698
6	6:16m	JB	0.93	1.10	700
7	6'ylan	LS	0.88	1.11	742
8	7:15am	JK	0.89	1.06	841
9	7:37am	JK	0.93	1.05	732
10	7:16 am	JK	0.97	1.14	717
	7:15am	JK	0.97	1.15	785
12	7:50cm	AR	1.03	1.12	848
13	6:13 am	JB	1.03	1.29	715
14	9:34am	JH	1.04	1.20	783
15	7:10cm	AR	1.05	1.27	795
16	10.32an	AR	1.08	1.24	790

Dete	Time	Initiala	Residuals (mg/L)		Daily
Date	Time	initials	Free	Total	Consumption
17	7:25an	AR	1.00	1.19	548
18	7:150m	AR	1.06	1.26	672
19	7.16an	AR	1.05	1.24	760
20	6:27am	JB	1.09	1.17	759
21	7:05	LS	1.04	1.15	758
22	7:25an	AR	1.04	1.27	911
23	7:50 am	JK	1.17	1.31	690
24	7:24am	AR	1.13	1.30	687
25	7:17am	JK	1.18	1.37	751
26	6:26am	JK	1.12	1.34	718
27	6:43 am	JB	1.16	1-36	750
28	10:27av	JH	1.17	1.38	937
29	7:23am	AR	1.17	1.38	819
30	6:22 gm	JK	1.15	1.40	778
31	6:20 am	JK	1.08	1.31	894
		Total N	Ionthly Con	sumption	23,377

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials
2	7:38am	JK	0,01	1	15	7:25mg	AR	0.01	30	6:37am	JK
9	7:54am	JK	0.00		23	7:55 am	JK	0.01			

Residuals at Distribution Sample Locations

D	-	In the La	Lesstien	Residua	ls (mg/L)
Date	lime	initials	Location	Free	Total
9	7:10gm	JK	425 6th Ave	0.86	1.00
23	7:25am	JK	425 6th Ave	0.99	1.17
			i i i		
mit	ted by (Pi	rint):	Andrew Rempel		Signature:

Signature: Chre

PLEASE REFER TO OPERATING LICENCE FOR APPLICABLE TREATMENT STANDARDS AND MONITORING REQUIREMENTS. PLEASE CONTACT YOUR DRINKING WATER OFFICER WITH ANY COMMENTS, QUESTIONS OR CONCERNS.

Ammonia

(mg/L)

0.01

Water System Name: Spruce Dru	<u>re_WTP</u> Water System Code: <u>/</u> 5	7.25
Month: <u>Aug</u> Year: <u>2034</u>	Type of Measurement Device:	Hach DR890
Operator-in-charge (Print): Rugn	Duck Other Operators (Print):	Andrew Remisel
Daily Consumption Units:3		Jim Kehler

Flow Meter for Daily Consumption: (circle choice) Raw (freated No Metering

D	-	lu iti ala	Residua	ls (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
1	6:15 am	JK	1.12	1.32	950
2	7:16am	JK	1.07	1.24	940
3	6:16am	JB	1.08	1.25	935
4	8:22 am	JK	1.03	1.22	782
5	9:24an	JH	1.05	1.22	718
6	8:07am	JK	1.04	1.23	896
7	7:15am	JK	1.03	1.22	799
8	7:25am	JK	0.97	1.17	802
9	7:18am	JK_	1.01	1.20	727
10	10:1000	RP	1.10	1.17	602
	6:57	13	0,94	1.15	805
12	7:20am	JK	1.02	1.20	1219
13	7:16am	JK	1.00	1.18	1061
14	7:43am	JK	1.01	1.18	1043
15	7:12am	AR	1.02	1.21	830
16	7:24am	JK	0.96	1.14	682

Date Time Initials Free Total Consum 17 6.12 JE 0.92 1.07 656 18 7.33 L5 6.48 1.07 7.33 19 8.06am 5K 0.91 1.05 945 20 7.59am 5K 0.92 1.08 875 21 7.18am 5K 0.87 1.03 835	ly
17 6:12 JB 0.92 1.07 656 18 7:33 L5 6:88 1.07 7.33 19 8:06am JK 0.91 1.05 945 20 7:59am JK 0.92 1.08 875 21 7:18am JK 0.87 1.03 835	nption
18 7:33 L5 6:83 1.07 7.33 19 8:06am JK 0.91 1.05 945 20 7:59am JK 0.92 1.08 875 21 7:18am JK 0.87 1.03 835	
19 8:06am JK 0.91 1.05 945 20 7:59am JK 0.92 1.08 875 21 7:18am JK 0.87 1.03 835	
20 7:59am JK 0.92 1.08 875 21 7:18am JK 0.87 1.03 835	
21 7:18am JK 0.87 1.03 835	-
	-
22 7:14am JK 0.87 1.03 788	
23 7:44an AR 0.84 1.06 738	3
24 7:48am MV 0.86 0.13 779	
25 7:55 MV 0.84 0.94 788	
26 TITAM JK 1.01 1.21 934	(
27 7:17am JK 1.06 1.28 807	
28 7:15am JK 1.04 1.22 741	
29 7:15am JK 1.05 1.23 757	
30 7:15am JK 1.07 1.27 726	
31 JISOGIN KP 1.08 1.28 712	h

Total Monthly Consumption 25,905

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
6	8:20am	JK	0.01		20	8:15am	TK	0.01				
13	7:33am	JK	0.01	(27	7:30 am	JK	0,00				

Residuals at Distribution Sample Locations

	-	1	l ti	Residua	ls (mg/L)
Date	Time Initials Location		Location	Free	Total
6	7:45au	JK	61 Aberdeen	0,96	1.11
20	7:20au	JK	801 Turnberry	0.87	1.00
mit	ted by (P	rint): A	ndrew Rempel		Signature:

Signature: <u>Ann 1</u>

Water System Name: Spruce Drive WTP Water System Code: 15	1.25
Month: Sept Year: 2024 Type of Measurement Device: 4	ach DR890
Operator-in-charge (Print):	Andrew Rempel
Daily Consumption Units:	-Tim Kehler

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

Dete	Timo		Residual	ls (mg/L)	Daily
Date	Time	initials	Free	Total	Consumption
1	2260	MV	1.02	0.91	950
2	9:54 m	JH	1.16	1.39	557
3	7:35am	JK	1.24	1.46	821
4	7:48am	JK	1.26	1.47	929
5	7:27am	JK	1.25	1.45	75a
6	7:22 am	TK	1.21	1.44	764
7	8:15AM	KH	1.14	1.37	747
8	4:30 AM	KH	1.20	1.39	761
9	7:20 am	JK	1.20	1.40	1049
10	7:20am	JK	1.18	1.38	849
	7:15am	JK	1.19	1.40	833
12	7:19 am	JK	1.20	1.40	791
13	7:21am	JK	1.14	1.34	831
14	Sillam	KE	0.93	1.00	789
15	\$:45AM	KH	0.96	1,22	869
16	7:20am	JK	1.04	1.26	996

Dete	Time	Initiala	Residua	ls (mg/L)	Daily
Date	Time	Initials	Free	Total	Consumption
17	8:10am	JK	1.13	1.35	830
18	7:16am	JK	1.14	1.35	711
19	1:21am	AR	1.08	1.30	751
20	7:25cm	AR	1.13	1.39	716
21	8:30 AM	KH	0.94	1.23	691
22	9:15 AM	KH	1.00	1.28	712
23	7:15am	JK	1.10	1.37	760
24	7:15am	JK	1.16	1.34	724
25	7:49am	JK	1.29	1.51	787
26	7:40an	JK	1.23	1.48	727
27	7:11am	AR	1.28	1.48	780
28	8!(5an	JKE	130	1.46	700
29	8: KAM	KH	1.09	1.35	710
30	8:56am	JK	1.08	1.26	759
31					
		Total N	Ionthly Con	sumption	23,646

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
3	7:55am	JK	0.01	17	8:00am	JK	0.01				
10	7:35am	JK	0.00	24	7:30am	JK	0.00				

Residuals at Distribution Sample Locations

Dete	T :	1	Lesetion	Residua	ls (mg/L)				
Date	Time	initials	Location	Free	Total				
3	7:15 am	JK	425 6th Ave	1.15	1.32				
17	7:50 ap	, JK	329 Bronstone Dr	1.10	1.23				
			· · · · · · · · · · · · · · · · · · ·						
mitt	mitted by (Print): Andrew Rempel Signature:								

Signature: ______

Nater System Name: <u>Spruce Drive WTP</u> Water System Code: <u>151. 25</u>						
Month: Oct Year: 2024 Type of Measurement Device: Hach DR890						
Operator-in-charge (Print): Ryan Duck Other Operators (Print): Andrew Rempel						
Daily Consumption Units: M ³¹ Jim Kehler						

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

Dete		I	Residua	ls (mg/L)	Daily
Date	Time	initiais	Free	Total	Consumption
1	7:37am	JK	1.09	1.26	794
2	7:16am	JK	1.09	127	718
3	7:14am	JK	1.10	1.26	734
4	7:17am	JK	1.09	1.26	749
5	7:200	MAE	115	1.26	700
6	7:00AM	KH	1.06	1.30	705
7	7:13cm	AR	1.09	1.28	864
8	7:15am	JK	1.16	1.34	רוד
9	7:14am	JK	1.12	1.30	727
10	7;30cm	AR	1.13	1.32	745
2	8:37an	AR	1.09	1.32	768
12	8:06am	ike	1.14	1.30	646
13	345 pm	MV	1.31	1.49	1089
14	9:50 am	KP	1:28	1.49	394
15	7:46cim	JK	1.42	1.65	765
16	7:16 am	JK	1.46	1.64	654

Dete	Time	Initiala	Residua	ls (mg/L)	Daily
Date	Time	initials	Free	Total	Consumption
17	7:17am	JK	1.45	1.65	706
18	7:16an	AR	1.47	1.69	716
19	8:05AM	KH	1.31	1.58	655
20	8:55AM	KH	1.40	1.40	768
21	7:18 am	JK	1.28	1.50	780
22	7:19am	JK	1.31	1.50	692
23	7:19am	JK	1.28	1.48	680
24	7:17am	JK	1.23	1.43	659
25	7:17am	AB	1.21	1.41	663
26	10:59am	KP	1.12	1.36	821
27	9:00 AM	KH	1.16	1.30	699
28	7:42am	JK	1.11	1.30	752
29	1:09 PM	AR	1.10	1.29	857
30	7:16am	JK	1.09	1.27	454
31	7:18am	JK	1.07	1.24	669
		sumption	22,269		

1

in

in

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
1	7:51am	JK	0.00	1	15	8:00 am	JK	0.00	28	8:06am	JK	0.00
8	7:29an	JK	0.00	0	795	7:35am	JK	0.00		~~ .	-	

Residuals at Distribution Sample Locations

Date	-	Initials		Residuals (mg/L)					
Date	Time		Location	Free	Total				
1	7:15au	JK	425 6th Ave	1.08	1.22				
15	7:26 m	JK	61 Aberdeen	1.12	1.26				
28	7:20am	JK	239 Kingshead	1.07	1.26				
		0.11	Ť						
4									
mitted by (Print): Andrew Remper Signature:									

Nater System Name: <u>Spruce Drive</u> WTP Water System Code: <u>151.25</u>									
Month: <u>Nov</u> Year: <u>2024</u> Type of Measurement Device:	Hach DR890								
Operator-in-charge (Print):Other Operators (Print):	Andrew Rempel								
Daily Consumption Units:	Jim Kehler								

Flow Meter for Daily Consumption: (circle choice) Raw Treated No Metering

			1		1		
Date	Time	Initials	Residua	ls (mg/L)	Daily		
Duto	Time	maais	Free	Total	Consumption		
1	10;35cm	AR	1.04	1.22	737		
2	8:10	MV	0.90	0.94	522		
3	8:42	KH	0.85	1.11	742		
4	7:13am	AR	0.95	1.19	782		
5	7:17am	JK	1.01	1.28	685		
6	7:17am	JK	1.09	1.28	667		
7	7:17 am	JK	1.08	1:28	672		
8	7:18an	AR	1.04	1.27	646		
9	14.6ZZ:0	P	1.18	1.24	646		
10	8:18 Am	KH	1.05	1.20	730		
1	1:04pm	KE	1.07	1.18	925		
12	7:41am	JK	1.09	1.27	575		
13	7:15am	JK	1.14	1.27	655		
14	7:15am	JK	1.10	1.27	662		
15	7:24am	JK	1.04	1.22	649		
16	8:28AM	KH	1.06	1.16	656		

Dete	Time	Initiala	Residua	ls (mg/L)	Daily	
Date	Time	initials	Free	Total	Consumption	
17	9:31am	KH	0.54	0.69	760	
18	7:20 cm	AR	1.25	1.44	752	
19	7:46am	JK	1.24	1.39	693	
20	7:17am	JK	1.12	1.33	670	
21	7:16am	JK	1.08	1.25	707	
22	7:27an	AR	1.07	1.24	656	
23	9:38av	XX Y	1.B	1.26	700	
24	9:23AM	KH	1.01	1.21	707	
25	7:18am	JK	1.67	1.27	743	
26	7:37 ann	JK	1.13	1.31	682	
27	7:182m	JK	1.08	1.27	681	
28	7:18am	JK	1.12	1.31	690	
29	7:17am	JK	1.14	1.32	661	
30	8:38AM	KH	1.09	1.25	661	
31						
		20,704				

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)
5	7:31 am	JK	0.00	19	7:50am	JK	0.00				
12	7:56am	JK	0.01	36	7:53 am	JK	0.01				

Residuals at Distribution Sample Locations

Date	Time	Initiala	Legation	Residuals (mg/L)						
Date	Time	initials	Location	Free	Total					
12	7:10 am	JK	425 6th Ave	1.04	1.22					
26	7:25 aug	JK	329 Bronstone	1.10	1.24					
		~	·							
mitted by (Print): Andrew Rempel Signature:										

Signature: Chen Anneed

Water System Name: Spruce Drive WTP	Water System Code:	51.25
Month: Dec Year: <u>2024</u> Type of Meas	surement Device:	Hach DR 890
Operator-in-charge (Print): Ryan Duck	Other Operators (Print):	Andrew Rempel
Daily Consumption Units:		Jim Kehler

Flow Meter for Daily Consumption: (circle choice) Raw (reated) No Metering

D		luitt - la	Residual	s (mg/L)	Daily		
Date	Time	Initials	Free	Total	Consumption		
1	9:23AM	KH	1.09	1.40	749		
2	7:50am	JK	1.11	1.40	753		
3	7:24am	JK	1.17	1.36	648		
4	7:38am	JK	1.18	1.37	68		
5	7:30am	JK	1.17	1.31	668		
6	7:20am	JK	1.10	1.28	677		
7	7:040m	P.	1.14	1.25	673		
8	804am	MV	1.09	1.55	786		
9	8:39an	AR	1.08	1,30	858		
10	7:34am	JK	1.19	1.37	678		
	7:20am	JK	1.19	1.37	662		
12	8:00 am	JK	1.15	1.33	707		
13	7:21am	JK	1.14	1.32	622		
14	8:26 m	KH	1.12	1.30	659		
15	CAP D:P	KP	1.19	1.32	723		
16	7:58am	JK	1.16	1.34	735		

Dete	Time	Initiala	Residual	s (mg/L)	Daily		
Date	Time	Initials	Free	Total	Consumption		
17	8:47am	AR	1.17	1.38	722		
18	7:47am	JK	1.15	1.36	628		
19	8:35am	JK	1.18	1.35	729		
20	7:16 cm	AR	1.16	1.36	617		
21	7:11gm	KE	1.12	1.30	648		
22	9:35Au	ICH	1.13	1.30	825		
23	7:50a.	JK	1.16	1.33	672		
24	7:05cm	JK	1.16	1.35	675		
25	SAM	RD	1.14	1.33	727		
26	11:40an	AR	1.14	1.32	780		
27	7:30am	JK	1.12	1.29	493		
28	9:16AM	KH	1.04	1.24	708		
29	8:27AM	KH	1.12	1.23	636		
30	7:30 am	JK.	0.97	1.14	669		
31	7:43 gm	JK	1.03	1,26	674		
		Total N	Ionthly Con	sumption	21,482		

Ammonia in Treated Water

Date	Time	Initials	Ammonia (mg/L)	Date	Time	Initials	Ammonia (mg/L)		Date	Time	Initials	Ammonia (mg/L)
3	7:39an	JK	0.00	17	9:00an	AR	0.00		31	BiODam	JK	0.01
10	7:4900	JK	0.00	23	8:05am	JK	0,00	5				

Residuals at Distribution Sample Locations

D		Initiala	Lesstion	Residuals (mg/L)						
Date	Time	Initials	Location	Free	Total					
10	7:10am	JK	329 Bronstone Dr	1.11	1.29					
23	7:25am	JK	329 Bronstone Dr	1.13	1.28					
				a di seconda						
whitted by (Print): Andrew Rempel Signature:										

1 11-Signature:

Niverville WTP - Chlorine Report - January 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel

			Chlorine, ppm								
				Distribution Chlorine							
and the second				Operator	Verification	Automati	ion Records	Number	of Free Chloring	e Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	10:00 AM	KP	1.24	1.06	0.97	0.96	0.89	288	0	100.0	701.7
2	7:20 AM	AR	1.22	1.03	0.95	1.02	0.94	288	0	100.0	681.1
3	7:15 AM	AR	1.24	1.04	0.97	1.03	0.96	288	0	100.0	660.7
4	7:21 AM	AR	1.21	1.02	1.03	1.04	0.87	288	0	100.0	705.5
5	7:33 AM	AR	1.12	0.91	1.02	0.94	0.82	288	0	100.0	641.3
6	8:42 AM	SK	1.11	0.93	0.86	0.88	0.83	288	0	100.0	705.3
7	7:55 AM	KE	0.84	0.75	0.88	0.90	0.82	288	0	100.0	782.5
8	8:35 AM	JK	1.13	0.96	0.90	0.88	0.72	288	0	100.0	683.2
9	9:06 AM	AR	1.18	1.00	0.88	0.95	0.84	288	0	100.0	657.3
10	7:15 AM	AR	1.17	0.97	1.05	1.00	0.89	288	0	100.0	641.6
11	9:36 AM	AR	1.25	1.05	0.94	1.02	0.87	288	0	100.0	658.7
12	8:39 AM	AR	1.27	1.08	1.11	1.10	0.95	288	0	100.0	642.6
13	6:58 AM	KE	1.29	1.09	1.12	1.09	1.04	288	0	100.0	762.6
14	7:04 AM	KE	1.26	1.07	1.06	1.04	1.00	288	0	100.0	795.4
15	7:20 AM	AR	1.20	1.02	1.00	1.03	0.85	288	0	100.0	699.3
16	8:12 AM	AR	1.25	1.07	1.02	1.02	0.84	288	0	100.0	661.3
17	7:22 AM	AR	1.21	0.99	1.03	1.03	0.84	288	0	100.0	706.9
18	7:17 AM	AR	1.27	1.08	1.04	1.02	0.92	288	0	100.0	689.2
19	8:27 AM	AR	1.26	1.06	0.99	1.04	0.95	288	0	100.0	654.8
20	7:03 AM	SK	1.20	1.04	1.07	1.08	0.89	288	0	100.0	732.4
21	6:55 AM	MV	1.22	1.07	1.09	1.09	0.81	288	0	100.0	777.4
22	7:40 AM	AR	1.32	1.09	1.11	1.12	0.99	288	0	100.0	666.0
23	8:34 AM	AR	1.40	1.19	1.19	1.18	0.91	288	0	100.0	673.9
24	7:18 AM	AR	1.42	1.20	1.15	1.16	0.97	288	0	100.0	667.8
25	7:25 AM	AR	1.34	1.11	1.15	1.17	0.96	288	0	100.0	683.7
26	7:25 AM	AR	1.39	1.20	1.19	1.18	0.84	288	0	100.0	689.0
27	7:05 AM	SK	1.40	1.24	1.10	1.12	1.08	288	0	100.0	735.6
28	2:05 PM	KE	1.31	1.08	1.11	1.11	0.97	288	0	100.0	767.3
29	7:15 AM	AR	1.33	1.10	1.09	1.08	0.94	288	0	100.0	663.1
30	7:19 AM	AR	1.28	1.10	1.05	1.05	1.01	288	0	100.0	651.0
31	7:19 AM	AR	1.29	1.06	1.04	1.07	0.87	288	0	100.0	671.2
				d			Monthly Total	8928	0		

Compliance with Chlorine Standard: 100.0%

Signature: anon Know

Submitted by (Print): Andrew Renpel

Niverville WTP - Chlorine Report - February 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel

Chlorine, ppm											
						Di	stribution Chlor	rine			
				Operator Verification		Automation Records		Number of Free Chlorine Readings			
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	7:19 AM	AR	1.29	1.09	1.08	1.03	0.87	288	0	100.0	679.0
2	6:19 AM	AR	1.25	1.02	0.92	1.01	0.89	288	0	100.0	674.1
3	6:33 AM	SK	1.17	0.99	1.08	1.07	0.86	288	0	100.0	749.4
4	7:20 AM	MV	1.23	1.00	0.98	1.01	0.95	288	0	100.0	804.7
5	8:43 AM	AR	1.22	1.02	0.98	1.01	0.84	288	0	100.0	709.1
6	6:15 AM	AR	1.28	1.09	1.05	1.05	0.84	288	0	100.0	669.1
7	7:49 AM	AR	1.33	1.08	1.01	1.07	1.00	288	0	100.0	689.9
8	7:12 AM	AR	1.28	1.06	1.09	1.11	0.88	288	0	100.0	687.7
9	7:18 AM	JK	1.30	1.11	1.11	1.07	0.89	288	0	100.0	665.6
10	8:47 AM	SK	1.22	1.05	1.06	1.04	0.99	288	0	100.0	721.8
11	7:09 AM	MV	1.15	0.97	1.07	1.05	0.80	288	0	100.0	790.9
12	7:15 AM	AR	1.22	1.05	1.00	1.00	0.96	288	0	100.0	677.7
13	7:17 AM	AR	1.17	0.94	0.99	1.00	0.83	288	0	100.0	671.0
14	7:20 AM	AR	1.11	0.94	1.01	0.94	0.81	288	0	100.0	676.5
15	7:17 AM	AR	1.23	1.03	0.91	1.01	0.89	288	0	100.0	679.5
16	7:20 AM	AR	1.27	1.01	1.08	1.04	1.00	288	· 0	100.0	688.5
17	7:05 AM	SK	1.16	1.01	1.00	1.01	0.97	288	0	100.0	709.7
18	6:57 AM	KE	1.22	1.05	1.04	1.02	0.99	288	0	100.0	675.3
19	3:50 PM	AR	0.90	0.76	1.06	1.04	1.00	288	0	100.0	731.6
20	7:40 AM	AR	1.26	1.08	1.01	1.05	1.00	288	0	100.0	638.4
21	7:18 AM	AR	1.25	1.03	1.06	1.06	1.04	288	0	100.0	641.3
22	7:17 AM	AR	1.20	1.00	1.06	1.06	1.01	288	0	100.0	655.5
23	7:16 AM	AR	1.13	0.95	0.96	0.92	0.80	288	0	100.0	639.0
24	7:10 AM	SK	0.94	0.85	0.83	0.75	0.66	288	0	100.0	713.6
25	7:50 AM	MV	0.78	0.66	0.65	0.66	0.65	288	0	100.0	784.8
26	8:05 AM	AR	0.78	0.64	0.69	0.70	0.66	288	0	100.0	642.3
27	7:27 AM	JK	0.81	0.66	0.73	0.79	0.71	288	0	100.0	667.0
28	7:18 AM	AR	0.94	0.77	0.84	0.80	0.75	288	0	100.0	650.2
29	7:16 AM	AR	1.00	0.83	0.77	0.85	0.72	288	0	100.0	659.6

Monthly Total 8352 0

Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Rempel

Signature: Com Rent

1 of 1

Niverville WTP - Chlorine Report - March 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel

			Chlorine, ppm								
						Di	stribution Chlori	ne			
				Operator	Verification	Automati	on Records	Number	of Free Chloring	Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	7:15 AM	AR	1.16	0.98	0.95	0.97	0.95	288	0	100.0	639.3
2	7:07 AM	SK	1.20	1.00	0.96	0.97	0.94	288	0	100.0	707.2
3	8:10 AM	MV	1.15	1.09	0.97	0.99	0.94	288	0	100.0	745.4
4	7:40 AM	JK	1.24	1.01	1.03	1.02	0.99	288	0	100.0	681.4
5	8:05 AM	JK	1.23	1.06	0.98	1.04	0.98	288	0	100.0	629.0
6	7:22 AM	ЈК	1.21	1.03	1.08	1.12	1.06	288	0	100.0	644.0
7	9:43 AM	JK	1.34	1.14	1.21	1.16	1.12	288	0	100.0	647.3
8	6:10 AM	ЈК	1.43	1.22	1.19	1.20	1.15	288	0	100.0	635.3
9	9:18 AM	SK	1.54	1.35	1.27	1.31	1.22	288	0	100.0	706.4
10	8:04 AM	MV	1.61	1.35	1.35	1.31	1.26	288	0	100.0	733.9
11	7:24 AM	AR	1.57	1.33	1.25	1.32	1.24	275	0	100.0	651.7
12	7:14 AM	AR	1.56	1.34	1.35	1.35	1.30	288	0	100.0	655.4
13	7:16 AM	AR	1.51	1.27	1.28	1.28	1.24	288	0	100.0	654.7
14	7:19 AM	AR	1.47	1.26	1.27	1.27	1.22	288	0	100.0	658.4
15	7:55 AM	AR	1.47	1.23	1.25	1.25	1.20	288	0	100.0	657.9
16	9:02 AM	SK	1.32	1.16	1.28	1.20	1.18	288	0	100.0	739.0
17	3:25 PM	MV	1.46	1.24	1.21	1.22	1.20	288	0	100.0	776.8
18	7:17 AM	AR	1.45	1.22	1.21	1.21	1.16	288	0	100.0	677.6
19	7:45 AM	AR	1.33	1.11	1.15	1.18	1.15	288	0	100.0	654.9
20	7:12 AM	AR	1.42	1.19	1.17	1.20	1.17	288	0	100.0	683.4
21	7:16 AM	AR	1.44	1.22	1.19	1.21	1.17	288	0	100.0	674.4
22	7:18 AM	AR	1.44	1.23	1.19	1.21	1.17	288	0	100.0	649.3
23	9:00 AM	SK	1.25	1.10	1.22	1.22	1.18	288	0	100.0	703.6
24	3:00 PM	KE	1.43	1.25	1.18	1.18	1.14	288	0	100.0	724.5
25	7:13 AM	AR	1.34	1.11	1.16	1.14	1.10	288	0	100.0	675.0
26	7:13 AM	AR	1.40	1.18	1.11	1.16	1.12	288	0	100.0	640.6
27	8:08 AM	AR	1.34	1.16	1.14	1.15	1.13	288	0	100.0	633.0
28	10:39 AM	AR	1.34	1.13	1.16	1.17	1.10	288	0	100.0	639.1
29	8:28 AM	JK	1.35	1.14	1.16	1.16	1.12	288	0	100.0	667.1
30	11:34 AM	KP	1.32	1.24	1.14	1.13	1.10	288	0	100.0	652.5
31	8:12 AM	MV	1.19	1.00	1.10	1.11	1.05	288	0	100.0	749.1
							Monthly Total	8915	0		L

Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Rempel

Signature: Arean Amail

Niverville WTP - Chlorine Report - April 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators:Andrew Rempel

						Chlorin	ne, ppm	4						
				Distribution Chlorine										
				Operator	Verification	Automati	on Records	Number	of Free Chlorin	e Readings				
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)			
1	7:30 AM	AR	1.30	1.09	1.05	1.08	1.04	288	0	100.0	724.9			
2	7:40 AM	AR	1.21	1.06	1.08	1.09	1.07	288	0	100.0	692.7			
3	7:12 AM	AR	1.25	1.04	1.09	1.04	1.00	288	0	100.0	705.7			
4	7:11 AM	AR	1.24	1.06	0.99	1.05	0.98	288	0	100.0	692.7			
5	7:20 AM	JK	1.22	1.05	1.08	1.08	1.05	288	0	100.0	680.6			
6	6:55 AM	KE	1.21	1.13	1.07	1.05	1.02	288	0	100.0	723.7			
7	6:50 AM	KE	1.15	1.02	1.05	1.03	1.00	288	0	100.0	792.7			
8	7:14 AM	AR	1.16	0.98	1.00	1.02	0.99	288	0	100.0	714.7			
9	7:13 AM	AR	1.16	1.04	0.99	1.02	0.97	288	0	100.0	669.7			
10	7:14 AM	AR	1.13	0.96	1.02	0.98	0.95	288	0	100.0	682.6			
11	7:14 AM	AR	1.13	0.93	0.99	0.93	0.90	288	0	100.0	700.0			
12	7:16 AM	AR	1.11	0.94	0.90	0.94	0.89	288	0	100.0	686.5			
13	7:03 AM	SK	1.09	0.93	0.97	0.99	0.95	288	0	100.0	746.1			
14	7:35 AM	MV	1.08	0.94	0.97	0.97	0.95	288	0	100.0	769.7			
15	7:15 AM	AR	1.17	0.99	0.96	0.97	0.90	288	0	100.0	696.2			
16	7:30 AM	AR	1.21	1.14	1.00	1.09	0.98	288	0	100.0	660.9			
17	7:18 AM	AR	1.22	1.02	1.10	1.05	1.01	288	0	100.0	673.1			
18	7:12 AM	AR	1.19	0.98	1.01	1.03	1.01	288	0	100.0	666.1			
19	7:18 AM	AR	1.20	1.00	1.05	1.03	0.99	288	0	100.0	675.6			
20	7:03 AM	SK	1.15	0.95	1.01	1.00	0.98	288	0	100.0	713.4			
21	7:10 AM	MV	1.13	0.94	0.99	1.01	0.98	288	0	100.0	768.4			
22	7:13 AM	AR	1.13	0.98	1.04	0.98	0.93	288	0	100.0	705.3			
23	7:13 AM	AR	1.12	0.94	0.94	0.94	0.92	288	0	100.0	669.7			
24	7:16 AM	AR	1.10	0.93	0.93	0.97	0.93	288	0	100.0	689.5			
25	7:12 AM	AR	1.12	0.94	0.95	0.93	0.88	288	0	100.0	680.9			
26	7:53 AM	AR	1.08	0.91	0.90	0.91	0.89	288	0	100.0	707.8			
27	7:05 AM	SK	1.01	0.84	0.92	0.93	0.90	288	0	100.0	772.7			
28	7:15 AM	MV	1.10	0.89	0.97	0.99	0.95	288	0	100.0	801.9			
29	7:15 AM	AR	1.25	1.08	1.03	1.14	1.00	288	0	100.0	734.5			
30	7:40 AM	AR	1.32	1.22	1.23	1.21	1.19	288	0	100.0	685.5			

 Monthly Total
 8640
 0

 Compliance with Chlorine Standard:
 100.0%

Submitted by (Print): Andrew Rempel

Signature: and Konge

Niverville WTP - Chlorine Report - May 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel

				Chlorine, ppm									
			Distribution Chlorine										
				Operator	Verification	Automati	on Records	Number of Free Chlorine Readings					
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)		
1	7:18 AM	JK	1.32	1.12	1.19	1.16	0.99	288	0	100.0	667.2		
2	7:28 AM	JK	1.29	1.10	1.10	1.13	1.10	288	0	100.0	688.5		
3	7:17 AM	JK	1.28	1.09	1.08	1.09	1.07	288	0	100.0	662.5		
4	7:32 AM	SK	1.27	1.09	1.07	1.07	1.03	288	0	100.0	777.9		
5	7:40 AM	MV	1.26	1.12	1.05	1.05	1.00	288	0	100.0	899.3		
6	7:15 AM	AR	1.22	1.02	0.96	1.01	0.99	288	0	100.0	739.0		
7	7:16 AM	AR	1.20	0.99	1.01	1.02	1.00	288	0	100.0	682.7		
8	7:15 AM	AR	1.19	0.98	1.02	1.01	0.97	288	0	100.0	770.2		
9	7:16 AM	AR	1.20	1.01	0.98	0.99	0.94	288	0	100.0	788.6		
10	7:13 AM	AR	1.19	0.99	0.98	0.99	0.98	288	0	100.0	748.8		
11	7:37 AM	SK	1.16	1.01	0.97	0.96	0.92	288	0	100.0	843.7		
12	2:58 PM	KE	1.15	0.95	0.94	0.94	0.93	288	0	100.0	987.4		
13	7:14 AM	AR	1.14	0.94	0.92	0.92	0.88	288	0	100.0	785.0		
14	8:08 AM	AR	1.08	0.88	0.86	0.89	0.86	288	0	100.0	675.7		
15	7:13 AM	AR	1.12	0.91	0.87	0.90	0.87	288	0	100.0	684.0		
16	7:16 AM	AR	1.14	0.96	0.93	0.95	0.92	288	0	100.0	695.1		
17	7:16 AM	AR	1.14	0.93	0.97	0.97	0.94	288	0	100.0	679.5		
18	8:10 AM	KE	0.76	1.03	0.99	1.01	0.95	288	0	100.0	688.4		
19	8:07 AM	MV	1.00	1.09	1.02	1.03	1.00	288	0	100.0	686.7		
20	1:30 PM	MV	1.23	1.09	1.07	1.07	1.01	288	0	100.0	933.8		
21	7:17 AM	JK	1.32	1.09	1.09	1.08	1.05	288	0	100.0	789.6		
22	7:19 AM	JK	1.32	1.12	1.04	1.10	1.03	288	0	100.0	740.5		
23	7:22 AM	JK	1.27	1.08	1.12	1.13	1.12	288	0	100.0	725.9		
24	7:17 AM	AR	1.27	1.10	1.13	1.12	1.10	288	0	100.0	632.0		
25	7:47 AM	SK	1.24	1.15	1.09	1.11	1.08	288	0	100.0	684.1		
26	7:53 AM	KE	1.21	1.08	1.11	1.12	1.08	288	0	100.0	822.8		
27	7:20 AM	AR	1.19	0.99	1.08	1.02	0.97	288	0	100.0	719.5		
28	7:34 AM	JK	1.12	0.91	1.00	1.00	0.95	288	0	100.0	694.3		
29	7:30 AM	JK	1.18	0.99	1.01	1.01	0.99	288	0	100.0	738.6		
30	7:40 AM	JK	1.24	1.05	1.00	1.01	0.97	288	0	100.0	677.9		
31	7:30 AM	JK	1.21	1.05	1.02	1.04	1.00	288	0	100.0	724.4		
							Monthly Total	8928	0		L		

Compliance with Chlorine Standard: 100.0%

Signature: Com Kennet

Submitted by (Print): Andrew Rempel
Niverville WTP - Chlorine Report - June 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators:Andrew Rempel

						Chlorin	ne, ppm				
						Di	stribution Chlor	rine			
				Operator	Verification	Automati	on Records	Number	of Free Chloring	e Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	8:43 AM	SK	1.25	1.09	1.03	1.03	0.99	288	0	100.0	749.4
2	3:00 PM	MV	1.15	1.14	1.04	1.04	1.00	288	0	100.0	846.2
3	7:20 AM	JK	1.27	1.07	1.07	1.05	1.02	288	0	100.0	737.9
4	7:20 AM	JK	1.23	1.08	1.01	1.06	1.01	288	0	100.0	670.8
5	7:25 AM	JK	1.27	1.03	1.08	1.08	1.05	288	0	100.0	701.8
6	7:20 AM	JK	1.28	1.06	1.09	1.08	1.04	288	0	100.0	723.4
7	7:35 AM	JB	1.37	1.04	1.10	1.05	1.03	288	0	100.0	733.6
8	7:16 AM	JB	1.28	1.10	1.05	1.06	1.04	288	0	100.0	814.0
9	6:19 AM	JH	1.27	1.09	1.06	1.05	1.03	288	0	100.0	942.8
10	7:17 AM	AR	1.32	1.08	1.05	1.06	1.04	288	0	100.0	823.6
11	8:00 AM	JK	1.33	1.12	1.07	1.11	1.06	288	0	100.0	753.4
12	7:19 AM	JK	1.31	1.10	1.12	1.12	1.10	288	0	100.0	766.7
13	7:18 AM	JK	1.32	1.09	1.14	1.13	1.09	288	0	100.0	743.5
14	7:17 AM	AR	1.31	1.10	1.10	1.11	1.08	288	0	100.0	833.9
15	6:20 AM	JB	1.30	1.07	1.10	1.11	1.09	288	0	100.0	788.8
16	6:11 AM	JН	1.20	0.99	1.12	1.08	1.06	288	0	100.0	779.6
17	7:22 AM	JK	1.26	1.04	1.06	-	-	-	-	-	
18	7:15 AM	AR	1.26	1.04	1.08	1.08	1.05	288	0	100.0	678.8
19	7:17 AM	AR	1.24	1.03	1.04	1.06	1.04	288	0	100.0	722.4
20	7:15 AM	JK	1.19	1.04	1.06	1.06	1.04	288	0	100.0	786.0
21	7:17 AM	JK	1.19	0.99	1.05	1.05	1.03	288	0	100.0	822.0
22	6:11 AM	JB	1.22	1.00	1.05	1.05	1.02	288	0	100.0	835.3
23	6:53 AM	LS	1.15	1.07	1.06	1.05	1.02	288	0	100.0	885.9
24	7:15 AM	JK	1.18	1.02	1.01	1.02	1.00	288	0	100.0	865.1
25	7:42 AM	JK	1.16	0.96	1.02	1.04	1.01	288	0	100.0	806.4
26	7:11 AM	AR	1.19	0.99	1.01	1.01	0.99	288	0	100.0	766.8
27	7:16 AM	JK	1.18	1.01	1.00	1.02	0.95	288	0	100.0	834.2
28	7:17 AM	JK	1.18	0.98	1.03	1.02	0.99	288	0	100.0	647.9
29	7:09 AM	JB	1.09	0.93	0.99	0.99	0.97	288	0	100.0	666.5
30	6:35 AM	JH	1.16	1.01	1.00	1.01	0.97	288	0	100.0	699.0

Monthly Total 8352 0 Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Rempel

Signature: Chow Russ

1 of 1

CORRECTIVE ACTION REPORT

	Water Stewardship
WATER SYSTEM: Spruce Drive h	Water Plant): <u>Automated Records</u>
OPERATOR: Andrew Rempel	Signature: and Rud
TYPE OF NON-COMPLIANCE INCIDENT:	 Low disinfectant residual entering the distribution system, 21(1) MR 40/2007 Low disinfectant residual in the distribution system, 22 MR 40/2007 Filtered water turbidity exceeding the turbidity standard, 6(1) MR 41/2007 Low positive total coliform (< 10 CFU/100mL), 3 MR 41/2007
INITIAL TEST RESULTS:	DATE: JUNE 17 2021

DESCRIPTION OF CORRECTIVE ACTIONS TAKEN (attach additional sheets if required):

On June 17 we recieved an alon labeled "Database Unavailable Alarn-
No Trending Data." This was the first time we had experienced this alam
so I reached out to Delco who programmed our WTP.
They worked all day to resolve the issue but due to this, no
automated records were recorded on June 17. The issue was
resolved at about 7:00pm on June 17.
There were two times during the day that did not record any data, though
probes were still working and fuctioning normally. If chlorine would have droppe
to 0.55, we still would have recieved an alarn.
Chlorine trending data attached.

TEST RESULTS AFTER CORRECTIVE ACTIONS:

DATE: _

(attach laboratory results if applicable)

EMERGENCY REPORTING IS REQUIRED WHERE A POTENTIAL HEALTH RISK IS INVOLVED. FOLLOW THE INSTRUCTIONS OF YOUR DRINKING WATER OFFICER ON SITUATIONS REQUIRING IMMEDIATE REPORTING.

DISTRIBUTION:

FORWARD THE ORIGINAL TO YOUR DRINKING WATER OFFICER WITH YOUR MONTHLY DISINFECTION OR TURBIDITY MONITORING REPORT RETAIN A COPY FOR YOUR RECORDS Contact your Drinking Water Officer with any comments, questions or concerns.

June 17 – June 18, 2024 - Trending Data

Chlorine Level

Niverville WTP - Chlorine Report - July 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

			Chlorine, ppm								
						Di	stribution Chlori	ine			
				Operator '	Verification	Automati	on Records	Number	Number of Free Chlorine Readings		
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	6:26 AM	JН	1.13	0.95	0.99	0.99	0.95	288	0	100.0	711.6
2	7:25 AM	JK	1.11	0.94	0.98	0.97	0.93	288	0	100.0	711.4
3	7:09 AM	LS	1.08	0.84	0.99	0.92	0.86	288	0	100.0	688.4
4	7:12 AM	AR	1.13	0.95	0.87	0.93	0.86	288	0	100.0	716.6
5	7:09 AM	AR	1.16	0.95	0.97	0.98	0.95	288	0	100.0	746.9
6	6:16 AM	JB	1.10	0.93	0.95	0.95	0.90	288	0	100.0	750.1
7	6:41 AM	LS	1.11	0.88	0.90	0.90	0.88	288	0	100.0	831.2
8	7:15 AM	JK	1.06	0.89	0.90	0.89	0.88	288	0	100.0	725.8
9	7:37 AM	JK	1.05	0.93	0.88	0.91	0.87	288	0	100.0	714.7
10	7:16 AM	JK	1.14	0.97	0.95	0.97	0.91	288	0	100.0	815.8
11	7:15 AM	JK	1.15	0.97	0.99	1.00	0.98	288	0	100.0	803.2
12	7:50 AM	AR	1.12	1.03	1.02	1.02	0.97	288	0	100.0	829.8
13	6:13 AM	JB	1.29	1.03	1.03	1.03	1.01	288	0	100.0	696.5
14	9:34 AM	JН	1.20	1.04	1.01	1.03	0.99	288	0	100.0	857.1
15	7:10 AM	AR	1.27	1.05	1.04	1.05	1.01	288	0	100.0	715.3
16	10:32 AM	AR	1.24	1.08	1.02	1.02	1.00	288	0	100.0	657.0
17	7:25 AM	AR	1.19	1.00	1.04	1.03	1.00	288	0	100.0	688.0
18	7:15 AM	AR	1.26	1.06	1.04	1.03	1.01	288	0	100.0	765.7
19	7:16 AM	AR	1.24	1.05	1.04	1.01	1.00	288	0	100.0	806.3
20	6:27 AM	JB	1.17	1.09	0.99	1.02	0.99	288	0	100.0	774.4
21	7:05 AM	LS	1.15	1.04	1.01	1.02	0.99	288	0	100.0	831.6
22	7:25 AM	AR	1.27	1.04	1.05	1.06	0.99	288	0	100.0	761.7
23	7:50 AM	JK	1.31	1.17	1.10	1.11	1.09	288	0	100.0	680.7
24	7:24 AM	AR	1.30	1.13	1.12	1.12	1.08	288	0	100.0	772.5
25	7:17 AM	JK	1.37	1.18	1.14	1.16	1.11	288	0	100.0	763.2
26	6:26 AM	JK	1.34	1.12	1.16	1.15	1.13	288	0	100.0	752.2
27	6:43 AM	JB	1.36	1.16	1.14	1.16	1.12	288	0	100.0	820.2
28	10:27 AM	јн	1.38	1.17	1.22	1.20	1.17	288	0	100.0	904.3
29	7:23 AM	AR	1.38	1.17	1.15	1.17	1.15	288	0	100.0	856.2
30	6:22 AM	JK.	1.40	1.15	1.17	1.16	1.13	288	0	100.0	899.5
31	6:20 AM	ЈК	1.31	1.08	1.13	1.12	1.09	288	0	100.0	938.2
							Monthly Total	8928	0		

Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Rempel

Signature: Chan Thursd

Niverville WTP - Chlorine Report - August 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

						Chlori	ne, ppm				
						Di	stribution Chlori	ne			
				Operator	Verification	Automati	on Records	Number of Free Chlorine Readings			
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	6:15 AM	JK	1.32	1.12	1.10	1.09	1.05	288	0	100.0	924.5
2	7:16 AM	JK	1.24	1.07	1.08	1.07	1.05	288	0	100.0	993.2
3	6:16 AM	JB	1.25	1.08	1.04	1.04	1.01	288	0	100.0	748.4
4	8:22 AM	JK	1.22	1.03	1.05	1.03	1.01	288	0	100.0	695.3
5	9:24 AM	JН	1.22	1.05	1.01	1.01	0.96	288	0	100.0	900.7
6	8:07 AM	JK	1.23	1.04	1.02	1.02	0.99	288	0	100.0	867.3
7	7:15 AM	JK	1.22	1.03	0.99	0.99	0.97	288	0	100.0	822.6
8	7:25 AM	JK	1.17	0.97	1.00	1.00	0.96	288	0	100.0	726.9
9	7:18 AM	JK	1.20	1.01	0.98	0.98	0.97	288	0	100.0	845.2
10	10:10 AM	KP	1.17	1.10	0.98	0.98	0.97	288	0	100.0	918.4
11	6:57 AM	LS	1.15	0.94	1.01	0.99	0.97	288	0	100.0	1180.2
12	7:20 AM	JK	1.20	1.02	0.97	0.97	0.93	288	0	100.0	1091.6
13	7:16 AM	JK	1.18	1.00	0.97	0.96	0.93	288	0	100.0	1040.3
14	7:43 AM	JK	1.18	1.01	0.94	0.95	0.93	288	0	100.0	890.6
15	7:12 AM	AR	1.21	1.02	1.00	0.96	0.93	288	0	100.0	691.2
16	7:24 AM	JK	1.14	0.96	0.93	0.92	0.90	288	0	100.0	702.8
17	6:12 AM	JB	1.07	0.92	0.91	0.91	0.89	288	0	100.0	737.3
18	7:33 AM	LS	1.07	0.88	0.89	0.88	0.82	288	0	100.0	862.7
19	8:06 AM	JK	1.05	0.91	0.86	0.87	0.84	288	0	100.0	935.2
20	7:59 AM	JK	1.08	0.92	0.89	0.88	0.86	288	0	100.0	827.4
21	7:18 AM	JK	1.03	0.87	0.85	0.85	0.83	288	0	100.0	846.0
22	7:14 AM	JK	1.03	0.87	0.86	0.86	0.84	288	0	100.0	732.0
23	7:44 AM	AR	1.06	0.84	0.87	0.88	0.84	288	0	100.0	797.6
24	7:48 AM	MV	1.13	0.86	0.94	0.95	0.89	288	0	100.0	831.9
. 25	7:55 AM	MV	0.94	0.84	0.96	0.98	0.95	288	0	100.0	889.1
26	7:17 AM	JK	1.21	1.01	1.01	1.01	0.96	288	0	100.0	876.1
27	7:17 AM	JK	1.28	1.06	1.04	1.02	0.98	288	0	100.0	739.4
28	7:15 AM	JK	1.22	1.04	0.98	1.03	0.95	288	0	100.0	792.0
29	7:15 AM	JK	1.23	1.05	1.07	1.07	1.02	288	0	100.0	715.9
30	7:15 AM	JK	1.27	1.07	1.07	1.07	1.04	288	0	100.0	753.9
31	7:50 AM	KP	1.28	1.08	1.09	1.12	1.07	288 .	0	100.0	698.4
			***************************************	*******			Monthly Total	8928	0		L

Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Rempel

Signature: Com Anum

Niverville WTP - Chlorine Report - September 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

	-					Chlorin	ne, ppm				
						Di	stribution Chlor	rine			
				Operator	Verification	Automati	on Records	Number	of Free Chloring	e Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	2:26 PM	MV	0.91	1.02	1.17	1.16	1.13	288	0	100.0	715.3
2	9:54 AM	JН	1.39	1.16	1.19	1.20	1.14	288	0	100.0	919.4
3	7:35 AM	JK	1.46	1.24	1.25	1.25	1.23	288	0	100.0	890.1
4	7:48 AM	JK	1.47	1.26	1.22	1.22	1.18	288	0	100.0	803.4
5	7:27 AM	JK	1.45	1.25	1.21	1.21	1.18	288	0	100.0	771.3
6	7:22 AM	JK	1.44	1.21	1.19	1.19	1.16	288	0	100.0	778.1
7	8:15 AM	КН	1.37	1.14	1.19	1.20	1.18	288	0	100.0	785.5
8	8:30 AM	КН	1.39	1.20	1.20	1.20	1.18	288	0	100.0	1024.4
9	7:20 AM	JK	1.40	1.20	1.20	1.19	1.15	288	0	100.0	890.5
10	7:20 AM	JK	1.38	1.18	1.21	1.18	1.14	288	0	100.0	826.2
11	7:15 AM	JK	1.40	1.19	1.16	1.15	1.13	288	0	100.0	829.0
12	7:19 AM	JK	1.40	1.20	1.18	1.15	1.12	288	0	100.0	839.9
13	7:21 AM	JK	1.34	1.14	1.11	1.12	1.09	288	0	100.0	806.8
14	8:11 AM	KE	1.08	0.93	1.11	1.09	1.05	288	0	100.0	873.7
15	8:45 AM	КН	1.22	0.96	1.09	1.11	1.08	288	0	100.0	984.9
16	7:20 AM	ЈК	1.26	1.04	1.13	1.08	1.04	288	0	100.0	861.2
17	8:10 AM	ЈК	1.35	1.13	1.08	1.08	1.05	288	0	100.0	758.4
18	7:16 AM	JK	1.35	1.14	1.08	1.14	1.07	288	0	100.0	765.0
19	7:21 AM	AR	1.30	1.08	1.17	1.12	1.07	288	0	100.0	733.0
20	7:25 AM	AR	1.39	1.13	1.07	1.11	1.07	288	0	100.0	704.3
21	8:30 AM	КН	1.23	0.94	1.12	1.12	1.08	288	0	100.0	686.9
22	9:15 AM	КН	1.28	1.00	1.17	1.14	1.12	288	0	100.0	809.5
23	7:15 AM	JK	1.37	1.10	1.11	1.13	1.09	288	0	100.0	748.8
24	7:15 AM	JK	1.34	1.16	1.17	1.21	1.14	288	0	100.0	752.7
25	7:49 AM	JK	1.51	1.29	1.26	1.25	1.21	288	0	100.0	763.3
26	7:40 AM	JK	1.48	1.23	1.24	1.24	1.19	288	0	100.0	806.7
27	7:11 AM	AR	1.48	1.28	1.24	1.20	1.14	288	0	100.0	718.3
28	8:05 AM	KE	1.46	1.30	1.14	1.13	1.11	288	0	100.0	731.1
29	8:15 AM	КН	1.35	1.09	1.11	1.10	1.07	288	0	100.0	723.3
30	8:56 AM	JK	1.26	1.08	1.06	1.05	1.00	288	0	100.0	839.2

Monthly Total 8640 0 Compliance with Chlorine Standard: 100.0%

Signature: And Mm

Submitted by (Print): Andrew Rempel

Niverville WTP - Chlorine Report - October 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

						Chlori	ne, ppm				
						Di	stribution Chlori	ne			
				Operator '	Verification	Automati	on Records	Number of Free Chlorine Readings			
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	7:37 AM	JК	1.26	1.09	1.02	1.03	0.98	288	0	100.0	727.3
2	7:16 AM	JК	1.27	1.09	1.07	1.06	1.03	288	0	100.0	768.7
3	7:14 AM	JК	1.26	1.10	1.06	1.06	1.04	288	0	100.0	753.1
4	7:17 AM	JK	1.26	1.09	1.07	1.08	1.05	288	0	100.0	733.9
5	7:20 AM	KE	1.26	1,15	1.11	1.11	1.09	288	0	100.0	739.8
6	7:00 AM	КН	1.30	1.06	1.10	1.11	1.08	288	0	100.0	816.8
7	7:13 AM	AR	1.28	1.09	1.12	1.12	1.07	288	0	100.0	750.3
8	7:15 AM	JК	1.34	1.16	1.11	1.13	1.10	288	0	100.0	716.0
9	7:14 AM	JK	1.30	1.12	1.13	1.14	1.08	288	0	100.0	760.2
10	7:30 AM	AR	1.32	1.13	1.17	1.14	1.09	288	0	100.0	733.5
11	8:37 AM	AR	1.32	1.09	1.10	1.10	1.07	288	0	100.0	730.3
12	8:06 AM	KE	1.30	1.14	1.08	1.12	1.06	288	0	100.0	741.9
13	3:45 PM	MV	1.49	1.31	1.21	1.20	1.16	288	0	100.0	711.1
14	9:50 AM	KP	1.49	1.28	1.23	1.26	1.21	288	0	100.0	789.8
15	7:46 AM	JK	1.65	1.42	1.34	1.40	1.28	288	0	100.0	709.8
16	7:16 AM	JК	1.64	1.46	1.45	1.44	1.39	288	0	100.0	715.9
17	7:17 AM	JК	1.65	1.45	1.43	1.44	1.39	288	0	100.0	719.9
18	7:16 AM	AR	1.69	1.47	1.47	1.45	1.41	288	0	100.0	676.5
19	8:05 AM	КН	1.58	1.31	1.42	1.40	1.37	288	0	100.0	752.1
20	8:55 AM	КН	1.40	1.16	1.37	1.37	1.34	288	0	100.0	820.2
21	7:18 AM	JK	1.50	1.28	1.36	1.27	1.20	288	0	100.0	699.4
22	7:19 AM	JK	1.50	1.31	1.22	1.20	1.19	288	0	100.0	686.4
23	7:19 AM	JК	1.48	1.28	1.21	1.19	1.16	288	0	100.0	678.9
24	7:17 AM	JK	1.43	1.23	1.18	1.18	1.16	288	0	100.0	686.0
25	7:17 AM	AR	1.41	1.21	1.16	1.15	1.12	288	0	100.0	689.3
26	10:59 AM	КР	1.36	1.12	1.14	1.13	1.09	288	0	100.0	756.3
27	9:00 AM	КН	1.30	1.16	1.09	1.09	1.06	288	0	100.0	765.2
28	7:42 AM	JK	1.30	1.11	1.07	1.07	1.05	288	0	100.0	697.5
29	1:09 PM	AR	1.29	1.10	1.06	1.06	1.02	288	0	100.0	660.4
30	7:16 AM	JK	1.27	1.09	1.03	1.03	1.01	288	0	100.0	667.0
31	7:18 AM	JK	1.24	1.07	1.01	1.02	1.00	288	0	100.0	626.2
					·····		Monthly Total	8928	0		L

Compliance with Chlorine Standard: 100.0%

Submitted by (Print): Andrew Renpel

Signature:

Niverville WTP - Chlorine Report - November 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

		[Chlorii	ne, ppm				
						Di	stribution Chlo	rine			
				Operator	Verification	Automati	on Records	Number	of Free Chlorine	e Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	10:35 AM	AR	1.22	1.04	1.01	1.01	0.98	288	0	100.0	666.0
2	8:10 AM	MV	0.94	0.90	0.99	0.99	0.96	288	0	100.0	711.7
3	8:42 AM	КН	1.11	0.85	0.99	1.00	0.98	288	0	100.0	816.0
4	7:13 AM	AR	1.19	0.95	1.02	0.96	0.92	288	0	100.0	700.9
5	7:17 AM	JК	1.28	1.01	0.92	0.99	0.87	288	0	100.0	666.7
6	7:17 AM	јк	1.28	1.09	1.04	1.05	1.03	288	0	100.0	700.0
7	7:17 AM	JK	1.28	1.08	1.03	1.07	0.00	288	4	98.6	656.5
8	7:18 AM	AR	1.27	1.04	1.11	1.06	1.00	288	0	100.0	685.0
9	6:55 AM	КР	1.24	1.10	1.04	1.01	0.96	288	0	100.0	714.9
10	8:18 AM	КН	1.23	1.05	0.95	0.94	0.91	288	0	100.0	709.4
11	1:04 PM	KE	1.18	1.07	0.90	0.91	0.89	288	0	100.0	786.5
12	7:41 AM	JК	1.27	1.09	0.90	0.99	0.89	288	0	100.0	693.0
13	7:15 AM	JK	1.27	1.14	1.00	1.09	0.99	288	0	100.0	671.8
14	7:15 AM	JK	1.27	1.10	1.14	1.13	1.11	288	0	100.0	662.9
15	7:24 AM	JK	1.22	1.04	1.10	1.09	1.04	288	0	100.0	655.2
16	8:28 AM	КН	1.16	1.06	1.03	0.95	0.75	288	0	100.0	725.8
17	9:21 AM	КН	0.69	0.59	0.60	0.77	0.42	288	25	91.3	808.8
18	7:20 AM	AR	1.44	1.25	1.20	1.21	1.14	288	0	100.0	689.0
19	7:46 AM	JK	1.39	1.24	1.19	1.16	1.11	288	0	100.0	701.8
20	7:17 AM	јк	1.33	1.12	1.11	1.09	1.02	288	0	100.0	712.7
21	7:16 AM	JK	1.25	1.08	1.02	1.02	0.99	288	0	100.0	675.2
22	7:27 AM	AR	1.24	1.07	1.01	1.04	0.98	288	0	100.0	642.7
23	9:38 AM	KE	1.26	1.13	1.07	1.07	1.04	288	0	100.0	743.0
24	9:23 AM	КН	1.21	1.01	1.07	1.08	1.05	288	0	100.0	796.1
25	7:18 AM	JK	1.27	1.07	1.10	1.12	1.06	288	0	100.0	699.6
26	7:37 AM	JK	1.31	1.13	1.10	1.11	1.08	288	0	100.0	691.8
27	7:18 AM	JK	1.27	1.08	1.09	1.11	1.06	288	0	100.0	694.0
28	7:18 AM	JK	1.31	1.12	1.14	1.14	1.12	288	0	100.0	684.4
29	7:17 AM	JK	1.32	1.14	1.11	1.12	1.10	288	0	100.0	646.8
30	8:38 AM	КН	1.25	1.09	1.13	1.14	1.09	288	0	100.0	739.6

Monthly Total 8640 29 Compliance with Chlorine Standard: 99.7%

Submitted by (Print): Andrew Rempel

Signature: from Mund

CORRECTIVE ACTION REPORT

WATER SYSTEM: Spruce Drive	WTP WATER SYSTEM CODE: 151.25
LOCATION OF NON-COMPLIANCE INCIDENT (ex.	Water Plant): Water I reatment Flant
OPERATOR: Andrew Rempel	Signature: Com Coul
TYPE OF NON-COMPLIANCE INCIDENT:	Low disinfectant residual entering the distribution system, 21(1) MR 40/2007
	Low disinfectant residual in the distribution system, 22 MR 40/2007
	Filtered water turbidity exceeding the turbidity standard, 6(1) MR 41/2007
	Low positive total coliform (< 10 CFU/100mL), 3 MR 41/2007
	Other
INITIAL TEST RESULTS:	0.00 free DATE: November 7/2024

DESCRIPTION OF CORRECTIVE ACTIONS TAKEN (attach additional sheets if required):

On November 7 1 cleaned and calibrated our online	chlorine
analyzer. This caused 4 reading to be below standard.	

TEST RESULTS AFTER CORRECTIVE ACTIONS:

DATE: ____

(attach laboratory results if applicable)

EMERGENCY REPORTING IS REQUIRED WHERE A POTENTIAL HEALTH RISK IS INVOLVED. FOLLOW THE INSTRUCTIONS OF YOUR DRINKING WATER OFFICER ON SITUATIONS REQUIRING IMMEDIATE REPORTING.

DISTRIBUTION:

FORWARD THE ORIGINAL TO YOUR DRINKING WATER OFFICER WITH YOUR MONTHLY DISINFECTION OR TURBIDITY MONITORING REPORT RETAIN A COPY FOR YOUR RECORDS Contact your Drinking Water Officer with any comments, questions or concerns.

CORRECTIVE ACTION REPORT

WATER SYSTEM: Spruce Drive	WTIP WATER SYSTEM CODE: 151.25
LOCATION OF NON-COMPLIANCE INCIDENT (ex.	Water Plant): Water Treatment Plant
OPERATOR: Andrew Rempel	Signature: Charle prud
TYPE OF NON-COMPLIANCE INCIDENT:	Low disinfectant residual entering the distribution system, 21(1) MR 40/2007 Low disinfectant residual in the distribution system, 22 MR 40/2007
	Filtered water turbidity exceeding the turbidity standard, 6(1) MR 41/2007
	Low positive total coliform (< 10 CFU/100mL), 3 MR 41/2007
INITIAL TEST RESULTS:	0.42 Free DATE: November 17 2024

DESCRIPTION OF CORRECTIVE ACTIONS TAKEN (attach additional sheets if required):

On November 17 I received a message that the free chloring level was a lot lower
than the day previous. I contacted our person who was oncall to check the
chlorine system. After diagnostics, he found a fitting that had been cracked
and leaking chlorine. This was repaired. Because chlorine was not being
injected for a period of time, a dip test of the water in the reservoir was
taken. The water was reading 0.42 free. Chorine was then added
directly into the reservoir through six hatches to bring the chlorine back
above 0,50 free.
Unfortunately 25 readings were below 0.50 before the levels came back
UP.

TEST RESULTS AFTER CORRECTIVE ACTIONS: 1.25 free

DATE: November 18124

(attach laboratory results if applicable)

EMERGENCY REPORTING IS REQUIRED WHERE A POTENTIAL HEALTH RISK IS INVOLVED. FOLLOW THE INSTRUCTIONS OF YOUR DRINKING WATER OFFICER ON SITUATIONS REQUIRING IMMEDIATE REPORTING.

DISTRIBUTION:

FORWARD THE ORIGINAL TO YOUR DRINKING WATER OFFICER WITH YOUR MONTHLY DISINFECTION OR TURBIDITY MONITORING REPORT RETAIN A COPY FOR YOUR RECORDS Contact your Drinking Water Officer with any comments, questions or concerns.

Niverville WTP - Chlorine Report - December 2024

Water System Code: 151.25

Lead Operator: Ryan Dyck

Instrument Location: Distribution Chlorine

Other Operators: Andrew Rempel, Jim Kehler

						Chlori	ne, ppm				
				Distribution Chlorine							
				Operator	Verification	Automati	on Records	Number	of Free Chloring	e Readings	
Day of Month	Time	Operator Initials	Total Chlorine	Free Chlorine Handheld	Free Chlorine Display	Average	Minimum	Total	Below Standard	% Within Standard	Daily Usage (m³)
1	9:23 AM	КН	1.40	1.09	1.19	1.18	1.17	288	0	100.0	783.8
2	7:50 AM	JK	1.40	1.11	1.17	1.13	1.07	288	0	100.0	681.9
3	7:24 AM	JK	1.36	1.17	1.13	1.16	1.08	288	0	100.0	682.8
4	7:38 AM	JK	1.37	1.18	1.18	1.17	1.14	288	0	100.0	674.6
5	7:30 AM	JК	1.31	1.17	1.14	1.13	1.09	288	0	100.0	700.2
6	7:20 AM	JK	1.28	1.10	1.12	1.13	1.11	288	0	100.0	720.6
7	7:04 AM	KP	1.25	1.14	1.11	1.11	1.07	288	0	100.0	752.6
8	8:04 AM	MV	1.55	1.09	1.12	1.13	1.09	288	0	100.0	834.4
9	8:39 AM	AR	1.30	1.08	1.15	1.15	1.13	288	0	100.0	735.1
10	7:34 AM	JK	1.37	1.19	1.15	1.16	1.13	288	0	100.0	672.9
11	7:20 AM	JK	1.37	1.19	1.18	1.19	1.15	288	0	100.0	695.3
12	8:00 AM	JK	1.33	1.15	1.16	1.17	1.14	288	0	100.0	670.8
13	7:21 AM	JK	1.32	1.14	1.16	1.16	1.13	288	0	100.0	663.6
14	8:26 AM	КН	1.30	1.12	1.18	1.17	1.15	288	0	100.0	716.3
15	9:09 AM	KP	1.32	1.19	1.14	1.16	1.13	288	0	100.0	756.9
16	7:58 AM	JК	1.34	1.16	1.17	1.18	1.14	288	0	100.0	694.1
17	8:47 AM	AR	1.38	1.17	1.20	1.18	1.16	288	0	100.0	682.0
18	7:47 AM	JК	1.36	1.15	1.16	1.17	1.15	288	0	100.0	701.2
19	8:35 AM	JК	1.35	1.18	1.19	1.18	1.16	288	0	100.0	681.6
20	7:16 AM	AR	1.36	1.16	1.17	1.19	1.17	288	0	100.0	698.4
21	7:11 AM	KE	1.30	1.12	1.18	1.18	1.15	288	0	100.0	742.7
22	9:35 AM	КН	1.30	1.13	1.17	1.17	1.13	288	0	100.0	742.8
23	7:50 AM	JK	1.33	1.16	1.19	1.19	1.17	288	0	100.0	713.3
24	7:05 AM	JK	1.35	1.16	1.16	1.02	0.00	288	21	92.7	722.7
25	8:00 AM	RD	1.33	1.14	1.06	1.11	1.04	288	0	100.0	643.6
26	11:40 AM	AR	1.32	1.14	1.13	1.13	1.10	288	0	100.0	678.8
27	7:30 AM	JK	1.29	1.12	1.12	1.12	1.08	288	0	100.0	655.3
28	9:16 AM	КН	1.24	1.04	1.13	1.12	1.10	288	0	100.0	691.1
29	8:27 AM	КН	1.23	1.12	1.09	1.09	1.07	288	0	100.0	695.4
30	7:30 AM	JK	1.14	0.97	1.09	1.01	0.97	288	0	100.0	685.2
31	7:43 AM	јк	1.26	1.03	0,98	1.02	0.97	288	0	100.0	697.6
				•			Monthly Total	8928	21		ı

Compliance with Chlorine Standard: 99.8%

Submitted by (Print): Andrew Rempel

Signature: Craw Roven

CORRECTIVE ACTION REPORT

TER SYSTEM: Spruce Drive WIT-	WATER SYSTEM CODE: 151,25						
LUCATION OF NON-COMPLIANCE INCIDENT (ex. W	later Plant): Water Plant						
OPERATOR: Anchew Rempel	Signature: Jaran peur						
TYPE OF NON-COMPLIANCE INCIDENT:	Low disinfectant residual entering the distribution system, 21(1) MR 40/2007 Low disinfectant residual in the distribution system, 22 MR 40/2007 Filtered water turbidity exceeding the turbidity standard, 6(1) MR 41/2007						
	Low positive total coliform (< 10 CFU/100mL), 3 MR 41/2007						
INITIAL TEST RESULTS:	0.00 free DATE: Dec 24/24						
DESCRIPTION OF CORRECTIVE ACTIONS TAKEN (attach additional sheets if required):							

On December 24/24 we shut down flow to the chlorine analyzer
to install a back flow preventer on the distribution header freding the
Spruce Drive WTP building, Water was turned back on after the instalation
21 readings were below the standard because of this.

TEST RESULTS AFTER CORRECTIVE ACTIONS:

DATE: _

(attach laboratory results if applicable)

EMERGENCY REPORTING IS REQUIRED WHERE A POTENTIAL HEALTH RISK IS INVOLVED. FOLLOW THE INSTRUCTIONS OF YOUR DRINKING WATER OFFICER ON SITUATIONS REQUIRING IMMEDIATE REPORTING.

DISTRIBUTION:

WARD THE ORIGINAL TO YOUR DRINKING WATER OFFICER WITH YOUR MONTHLY DISINFECTION OR TURBIDITY MONITORING REPORT RETAIN A COPY FOR YOUR RECORDS

Contact your Drinking Water Officer with any comments, questions or concerns.

2024 Bi-Weekly Sampling

				<u>Free</u>	<u>Chlorine (mg/L)</u>		
<u>Date</u>	<u>Address</u>	<u>T.C.</u>	<u>E.C</u>	<u>Ammonia</u>	<u>Free</u>	<u>Total</u>	
Janaury 9th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.00	1.18	
	309 Bronstone Drive	< 1	< 1		0.78	0.88	
January 23rd	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.01	1.14	1.40	
	827 Turnberry Cove	< 1	< 1		0.89	1.00	
February 6th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.01	1.09	1.28	
	17 Gullane Street	< 1	< 1		0.94	1.08	
February 20th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.08	1.26	
	329 Bronstone Drive	< 1	< 1		1.01	1.14	
March 5th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.06	1.23	
	175 Breckenridge Drive	< 1	< 1		1.01	1.19	
March 19th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.11	1.33	
	810 Turnberry Cove	< 1	< 1		0.92	0.94	
April 2nd	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.06	1.21	
	329 Bronstone Drive	< 1	< 1		1.04	1.10	
April 16th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.14	1.21	
	425 - 6th Ave South	< 1	< 1		0.98	1.15	
April 30th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	1.22	1.32	
	33 Prestwick Street	< 1	< 1		0.85	0.96	
May 14th	Raw Water	< 1	< 1		0.00	0.00	
	Water Treatment Plant	< 1	< 1	0.00	0.88	1.08	
	329 Bronstone Drive	< 1	< 1		0.88	1.02	

May 28th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	0.91	1.12
	425 - 6th Ave South	< 1	< 1		0.98	1.17
June 11th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.12	1.33
	808 Turnberry Cove	< 1	< 1		0.87	0.95
June 25th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	0.96	1.16
	801 Turnberry Cove	< 1	< 1		0.96	1.09
July 9th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	0.93	1.05
	425 - 6th Ave South	< 1	< 1		0.86	1.00
July 23rd	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.17	1.31
	425 - 6th Ave South	< 1	< 1		0.99	1.17
August 7th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.04	1.23
	61 Aberdeen Drive	< 1	< 1		0.96	1.11
August 20th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	0.92	1.08
	801 Turnberry Cove	< 1	< 1		0.87	1.00
September 3rd	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.24	1.46
	425 - 6th Ave South	< 1	< 1		1.15	1.32
September 17th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.13	1.35
	329 Bronstone Drive	< 1	< 1		1.10	1.23
October 1st	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	1.09	1.26
	425 - 6th Ave South	< 1	< 1		1.08	1.22
October 15th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	1.42	1.65
	61 Aberdeen Drive	< 1	< 1		1.12	1.26

October 28th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	1.11	1.30
	239 Kingshead Road	< 1	< 1		1.07	1.26
November 12th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.09	1.27
	425 - 6th Ave South	< 1	< 1		1.04	1.22
November 26th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.13	1.31
	329 Bronstone Drive	< 1	< 1		1.10	1.24
December 10th	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.00	1.19	1.37
	329 Bronstone Drive	< 1	< 1		1.11	1.29
December 23rd	Raw Water	< 1	< 1		0.00	0.00
	Water Treatment Plant	< 1	< 1	0.01	1.16	1.33
	329 Bronstone Drive	< 1	< 1		1.13	1.28

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WP2413356	Page	: 1 of 10
Client	: Manitoba Conservation & Climate	Laboratory	: ALS Environmental - Winnipeg
Contact	: Marc Balcaen	Account Manager	Sheriza Rajack-Ahamed
Address	: 14 Fultz Boulevard Winnipeg MB Canada R3Y 0L6	Address	: 1329 Niakwa Road East, Unit 12 Winnipeg, Manitoba Canada R2J 3T4
Telephone	204 945 5776	Telephone	+1 204 255 9720
Project	: Niverville Spruce Drive - PWS 151.25	Date Samples Received	: 28-May-2024 09:46
PO		Date Analysis Commenced	: 28-May-2024
C-O-C number		Issue Date	: 03-Jun-2024 11:56
Sampler			
Site	: Niverville Spruce Drive - PWS 151.25 Op Id: 42862		
Quote number	: 2024 WTP Chemistry		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Gerry Vera	Analyst	Organics, Winnipeg, Manitoba
Rhovee Guevarra		Inorganics, Winnipeg, Manitoba
Rhovee Guevarra		Metals, Winnipeg, Manitoba

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
NIVERVILLE SPRUCE DRIVE 1 - RAW	Water	Solids, total dissolved [TDS]	Based on taste; TDS above 500 mg/L results in excessive scaling in water pipes, water heaters, boilers and appliances; TDS is composed of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate.	CDWG	AO	591 mg/L	500 mg/L
	Water	Turbidity	For systems that use groundwater, turbidity should generally be below 1.0 NTU. Filtration systems should be designed and operated to reduce turbidity levels as low as reasonably achievable and strive to achieve a treated water turbidity target from individual filters of less than 0.1 NTU.	CDWG	AO	1.49 NTU	1 NTU
	Water	Iron, total	Based on taste and staining of laundry and plumbing fixtures; no evidence exists of dietary iron toxicity in the general population.	CDWG	AO	312 µg/L	300 µg/L

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Page	:	3 of 10
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Unit	Description
-	no units
%	percent
% T/cm	% transmittance per centimetre
µg/L	micrograms per litre
µS/cm	microsiemens per centimetre
AU/cm	absorbance units per centimetre
CU	colour units (1 cu = 1 mg/l pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Client sample ID Matrix: Drinking Water				NIVERVILLE SPRUCE DRIVE 1 - RAW	NIVERVILLE SPRUCE DRIVE 2 - TREATED	NIVERVILLE SPRUCE DRIVE 3 - DISTRIBUTION @ MID POINT	 	
		Sampling	date/time	28-May-2024 08:00	28-May-2024 08:10	28-May-2024 08:17	 	
		S	ub-Matrix	Drinking Water	Drinking Water	Drinking Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2413356-001	WP2413356-002	WP2413356-003	 	
Physical Tests								
Absorbance, UV (@ 254nm)		E404/WP	AU/cm	0.0280	0.0130		 	
Alkalinity, bicarbonate (as CaCO3)		E290/WP	mg/L	282	155		 	
Alkalinity, carbonate (as CaCO3)		E290/WP	mg/L	<1.0	<1.0		 	
Alkalinity, hydroxide (as CaCO3)		E290/WP	mg/L	<1.0	<1.0		 	
Alkalinity, total (as CaCO3)		E290/WP	mg/L	282	155		 	
Colour, true		E329/WP	CU	<5.0	<5.0		 	
Conductivity		E100/WP	µS/cm	1120	653		 	
Hardness (as CaCO3), from total Ca/Mg		EC100A/WP	mg/L	145	76.2		 	
Langelier index (@ 4°C)		EC105A/WP	-	0.311	-0.254		 	
Langelier index (@ 60°C)		EC105A/WP	-	1.06	0.508		 	
рН		E108/WP	pH units	8.12	8.02		 	
Solids, total dissolved [TDS]		E162-L/WP	mg/L	591	330		 	
Turbidity		E121/WP	NTU	1.49	<0.10		 	
Transmittance, UV (@ 254nm)		E404/WP	% T/cm	93.8	97.0		 	
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	E298/WP	mg/L	0.664	<0.0050		 	
Bromide	24959-67-9	E235.Br-L/WP	mg/L	0.191	<0.050		 	
Chloride	16887-00-6	E235.CI-L/WP	mg/L	182	111		 	
Fluoride	16984-48-8	E235.F/WP	mg/L	0.853	0.445		 	
Nitrate (as N)	14797-55-8	E235.NO3-L/WP	mg/L	<0.0050	0.125		 	
Nitrite (as N)	14797-65-0	E235.NO2-L/WP	mg/L	<0.0010	<0.0010		 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WP	mg/L	34.7	18.6		 	
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]		E358-L/WP	mg/L	1.31	1.68		 	
Carbon, total organic [TOC]		E355-L/WP	mg/L	1.71	0.81		 	

		Client	sample ID	NIVERVILLE	NIVERVILLE	NIVERVILLE	 	
Matrix: Drinking Water				SPRUCE DRIVE	SPRUCE DRIVE	SPRUCE DRIVE		
				1 - RAW	2 - TREATED	3 -		
						DISTRIBUTION		
						@ MID POINT		
		Sampling	date/time	28-May-2024	28-May-2024	28-May-2024	 	
				08:00	08:10	08:17		
		S	Sub-Matrix	Drinking Water	Drinking Water	Drinking Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2413356-001	WP2413356-002	WP2413356-003	 	
Ion Balance								
Anion sum		EC101A/WP	meq/L	11.5	6.65		 	
Cation sum (total)		EC101A/WP	meq/L	10.3	5.81		 	
Ion balance (cations/anions)		EC101A/WP	%	89.6	87.4		 	
Ion balance (APHA)		EC101A/WP	%	-5.50	-6.74		 	
Total Metals								
Aluminum, total	7429-90-5	E420/WP	µg/L	<3.0	<3.0	3.1	 	
Antimony, total	7440-36-0	E420/WP	µg/L	<0.10	<0.10	<0.10	 	
Arsenic, total	7440-38-2	E420/WP	µg/L	3.03	1.76	1.75	 	
Barium, total	7440-39-3	E420/WP	µg/L	48.2	24.2	23.7	 	
Beryllium, total	7440-41-7	E420/WP	µg/L	<0.020	<0.020	Not Detected	 	
Bismuth, total	7440-69-9	E420/WP	µg/L	<0.050	Not Detected	<0.050	 	
Boron, total	7440-42-8	E420/WP	µg/L	453	442	442	 	
Cadmium, total	7440-43-9	E420/WP	µg/L	<0.0050	<0.0050	0.0072	 	
Calcium, total	7440-70-2	E420/WP	µg/L	30200	16500	16600	 	
Cesium, total	7440-46-2	E420/WP	µg/L	<0.010	<0.010	<0.010	 	
Chromium, total	7440-47-3	E420/WP	µg/L	Not Detected	Not Detected	<0.50	 	
Cobalt, total	7440-48-4	E420/WP	µg/L	0.12	<0.10	<0.10	 	
Copper, total	7440-50-8	E420/WP	µg/L	3.92	15.7	7.99	 	
Iron, total	7439-89-6	E420/WP	µg/L	312	<10	<10	 	
Lead, total	7439-92-1	E420/WP	µg/L	<0.050	<0.050	0.291	 	
Lithium, total	7439-93-2	E420/WP	µg/L	43.8	24.4	24.7	 	
Magnesium, total	7439-95-4	E420/WP	µg/L	16900	8500	8920	 	
Manganese, total	7439-96-5	E420/WP	µg/L	7.70	2.36	1.64	 	
Molybdenum, total	7439-98-7	E420/WP	µg/L	3.77	2.02	2.02	 	
Nickel, total	7440-02-0	E420/WP	µg/L	<0.50	<0.50	0.51	 	
Phosphorus, total	7723-14-0	E420/WP	µg/L	<50	213	212	 	

Client sample ID Matrix: Drinking Water			NIVERVILLE SPRUCE DRIVE 1 - RAW	NIVERVILLE SPRUCE DRIVE 2 - TREATED	NIVERVILLE SPRUCE DRIVE 3 - DISTRIBUTION	 	 	
	Sampling date/time		28-May-2024 08:00	28-May-2024 08:10	28-May-2024 08:17	 	 	
		S	ub-Matrix	Drinking Water	Drinking Water	Drinking Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2413356-001	WP2413356-002	WP2413356-003	 	
Total Metals								
Potassium, total	7440-09-7	E420/WP	µg/L	9060	5050	5010	 	
Rubidium, total	7440-17-7	E420/WP	µg/L	4.53	2.71	2.64	 	
Selenium, total	7782-49-2	E420/WP	µg/L	<0.050	<0.050	<0.050	 	
Silicon, total	7440-21-3	E420/WP	µg/L	4990	2610	2600	 	
Silver, total	7440-22-4	E420/WP	µg/L	<0.010	<0.010	Not Detected	 	
Sodium, total	7440-23-5	E420/WP	µg/L	163000	95500	97200	 	
Strontium, total	7440-24-6	E420/WP	µg/L	476	254	249	 	
Sulfur, total	7704-34-9	E420/WP	µg/L	12200	6230	5890	 	
Tellurium, total	13494-80-9	E420/WP	µg/L	<0.20	<0.20	<0.20	 	
Thallium, total	7440-28-0	E420/WP	µg/L	<0.010	Not Detected	Not Detected	 	
Thorium, total	7440-29-1	E420/WP	µg/L	<0.10	Not Detected	Not Detected	 	
Tin, total	7440-31-5	E420/WP	µg/L	<0.10	<0.10	0.15	 	
Titanium, total	7440-32-6	E420/WP	µg/L	<0.30	Not Detected	<0.30	 	
Tungsten, total	7440-33-7	E420/WP	µg/L	Not Detected	Not Detected	Not Detected	 	
Uranium, total	7440-61-1	E420/WP	µg/L	0.234	0.128	0.121	 	
Vanadium, total	7440-62-2	E420/WP	µg/L	<0.50	<0.50	<0.50	 	
Zinc, total	7440-66-6	E420/WP	µg/L	<3.0	5.1	27.6	 	
Zirconium, total	7440-67-7	E420/WP	µg/L	<0.20	<0.20	Not Detected	 	
Volatile Organic Compounds								
Benzene	71-43-2	E611D/WP	mg/L	<0.00050			 	
Bromodichloromethane	75-27-4	E611D/WP	mg/L	<0.00050			 	
Bromoform	75-25-2	E611D/WP	mg/L	<0.00050			 	
Chloroform	67-66-3	E611D/WP	mg/L	<0.00050			 	
Dibromochloromethane	124-48-1	E611D/WP	mg/L	<0.00050			 	
Dichloromethane	75-09-2	E611D/WP	mg/L	<0.0010			 	
Ethylbenzene	100-41-4	E611D/WP	mg/L	<0.00050			 	

Matrix: Drinking Water			sample ID	NIVERVILLE SPRUCE DRIVE 1 - RAW	NIVERVILLE SPRUCE DRIVE 2 - TREATED	NIVERVILLE SPRUCE DRIVE 3 - DISTRIBUTION @ MID POINT	 	
Sampling date/tim			date/time	28-May-2024 08:00	28-May-2024 08:10	28-May-2024 08:17	 	
		S	Sub-Matrix	Drinking Water	Drinking Water	Drinking Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2413356-001	WP2413356-002	WP2413356-003	 	
Volatile Organic Compounds								
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WP	mg/L	<0.00050			 	
Tetrachloroethylene	127-18-4	E611D/WP	mg/L	<0.00050			 	
Toluene	108-88-3	E611D/WP	mg/L	<0.00050			 	
Trichloroethane, 1,1,1-	71-55-6	E611D/WP	mg/L	<0.00050			 	
Trichloroethane, 1,1,2-	79-00-5	E611D/WP	mg/L	<0.00050			 	
Trichloroethylene	79-01-6	E611D/WP	mg/L	<0.00050			 	
Xylene, m+p-	179601-23-1	E611D/WP	mg/L	<0.00040			 	
Xylene, o-	95-47-6	E611D/WP	mg/L	<0.00030			 	
Xylenes, total	1330-20-7	E611D/WP	mg/L	<0.00050			 	
BTEX, total		E611D/WP	mg/L	<0.0010			 	
Volatile Organic Compounds Surroga	ites							
Bromofluorobenzene, 4-	460-00-4	E611D/WP	%	87.0			 	
Difluorobenzene, 1,4-	540-36-3	E611D/WP	%	102			 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	8 of 10
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Summary of Guideline Limits

Analyte	CAS Number	Unit	CDWG AO	CDWG MAC	CDWG OG		
Physical Tests							
Absorbance, UV (@ 254nm)		AU/cm					
Alkalinity, bicarbonate (as CaCO3)		mg/L					
Alkalinity, carbonate (as CaCO3)		mg/L					
Alkalinity, hydroxide (as CaCO3)		mg/L					
Alkalinity, total (as CaCO3)		mg/L					
Colour, true		CU	15 CU				
Conductivity		μS/cm					
Hardness (as CaCO3), from total Ca/Mg		mg/L					
Langelier index (@ 4°C)		-					
Langelier index (@ 60°C)		-					
pH		pH units			7 - 10.5 pH units		
Solids, total dissolved [TDS]		mg/L	500 mg/L				
Transmittance, UV (@ 254nm)		% T/cm					
Turbidity		NTU	1 NTU				
Anions and Nutrients							
Ammonia, total (as N)	7664-41-7	mg/L					
Bromide	24959-67-9	mg/L					
Chloride	16887-00-6	mg/L	250 mg/L				
Fluoride	16984-48-8	mg/L		1.5 mg/L			
Nitrate (as N)	14797-55-8	mg/L		10 mg/L			
Nitrite (as N)	14797-65-0	mg/L		1 mg/L			
Sulfate (as SO4)	14808-79-8	mg/L	500 mg/L				
Organic / Inorganic Carbon							
Carbon, dissolved organic [DOC]		mg/L					
Carbon, total organic [TOC]		mg/L					
Ion Balance							
Anion sum		meq/L					
Cation sum (total)		meq/L					
Ion balance (APHA)		%					
Ion balance (cations/anions)		%					
Total Metals							
Aluminum, total	7429-90-5	µg/L		2900 µg/L	100 µg/L		
Antimony, total	7440-36-0	µg/L		6 µg/L			
Arsenic, total	7440-38-2	µg/L		10 µg/L			
Barium, total	7440-39-3	μg/L		2000 µg/L			
Beryllium, total	7440-41-7	µg/L					

Page	:	9 of 10
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Analyte	CAS Number	Unit	CDWG	CDWG MAC	CDWG		
Fotal Metals - Continued			AU	MAG	00		
Bismuth, total	7440-69-9	µg/L					
Boron, total	7440-42-8	µg/L		5000 μg/L			
Cadmium, total	7440-43-9	µg/L		7 µg/L			
Calcium, total	7440-70-2	µg/L					
Cesium, total	7440-46-2	µg/L					
Chromium, total	7440-47-3	µg/L		50 µg/L			
Cobalt, total	7440-48-4	µg/L					
Copper, total	7440-50-8	µg/L	1000 µg/L	2000 µg/L			
Iron, total	7439-89-6	µg/L	300 µg/L				
Lead, total	7439-92-1	µg/L		5 µg/L			
Lithium, total	7439-93-2	µg/L					
Magnesium, total	7439-95-4	µg/L					
Manganese, total	7439-96-5	µg/L	20 µg/L	120 µg/L			
Molybdenum, total	7439-98-7	µg/L					
Nickel, total	7440-02-0	µg/L					
Phosphorus, total	7723-14-0	µg/L					
Potassium, total	7440-09-7	µg/L					
Rubidium, total	7440-17-7	µg/L					
Selenium, total	7782-49-2	µg/L		50 μg/L			
Silicon, total	7440-21-3	µg/L					
Silver, total	7440-22-4	µg/L					
Sodium, total	7440-23-5	µg/L	200000 µg/L				
Strontium, total	7440-24-6	µg/L		7000 µg/L			
Sulfur, total	7704-34-9	µg/L					
Tellurium, total	13494-80-9	µg/L					
Thallium, total	7440-28-0	µg/L					
Thorium, total	7440-29-1	µg/L					
Tin, total	7440-31-5	µg/L					
Titanium, total	7440-32-6	µg/L					
Tungsten, total	7440-33-7	µg/L					
Uranium, total	7440-61-1	µg/L		20 µg/L			
Vanadium, total	7440-62-2	µg/L					
Zinc, total	7440-66-6	µg/L	5000 μg/L				
Zirconium, total	7440-67-7	µg/L					
/olatile Organic Compounds							
Benzene	71-43-2	mg/L		0.005 mg/L			
Bromodichloromethane	75-27-4	mg/L					
Bromoform	75-25-2	mg/L					
BTEX, total		mg/L					

Page Work Order	:	10 of 10 WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Analyte	CAS Number	Unit	CDWG AO	CDWG MAC	CDWG OG		
Volatile Organic Compounds - Continued							
Chloroform	67-66-3	mg/L					
Dibromochloromethane	124-48-1	mg/L					
Dichloromethane	75-09-2	mg/L		0.05 mg/L			
Ethylbenzene	100-41-4	mg/L	0.0016 mg/L	0.14 mg/L			
Methyl-tert-butyl ether [MTBE]	1634-04-4	mg/L	0.015 mg/L				
Tetrachloroethylene	127-18-4	mg/L		0.01 mg/L			
Toluene	108-88-3	mg/L	0.024 mg/L	0.06 mg/L			
Trichloroethane, 1,1,1-	71-55-6	mg/L					
Trichloroethane, 1,1,2-	79-00-5	mg/L					
Trichloroethylene	79-01-6	mg/L		0.005 mg/L			
Xylene, m+p-	179601-23-1	mg/L					
Xylene, o-	95-47-6	mg/L					
Xylenes, total	1330-20-7	mg/L	0.02 mg/L	0.09 mg/L			
Volatile Organic Compounds Surrogates							
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

CDWG

	Canada Guidelines for Canadian Drinking Water Quality (JAN, 2023)
AO	Aesthetic Objective
MAC	Maximum Acceptable Concentrations
OG	Operational Guidance

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WP2413356	Page	: 1 of 12
Client	Manitoba Conservation & Climate	Laboratory	: ALS Environmental - Winnipeg
Contact	: Marc Balcaen	Account Manager	: Sheriza Rajack-Ahamed
Address	: 14 Fultz Boulevard	Address	: 1329 Niakwa Road East, Unit 12
	Winnipeg MB Canada R3Y 0L6		Winnipeg, Manitoba Canada R2J 3T4
Telephone	·	Telephone	: +1 204 255 9720
Project	: Niverville Spruce Drive - PWS 151.25	Date Samples Received	: 28-May-2024 09:46
PO		Issue Date	: 03-Jun-2024 11:56
C-O-C number	:		
Sampler	·		
Site	: Niverville Spruce Drive - PWS 151.25 Op Id: 42862		
Quote number	: 2024 WTP Chemistry		
No. of samples received	:3		
No. of samples analysed	:3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E٧	aluation: × =	Holding time excee	edance ; 🔹		Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	J Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E298	28-May-2024	29-May-2024	28	1 days	✓	29-May-2024	28 days	1 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E298	28-May-2024	29-May-2024	28	1 days	1	29-May-2024	28 days	1 days	1
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E235.Br-L	28-May-2024	28-May-2024	28	0 days	✓	28-May-2024	28 days	0 days	✓
				days						
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE						,				,
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E235.Br-L	28-May-2024	28-May-2024	28	0 days	~	28-May-2024	28 days	0 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC (Low Level)				1				1		
HDPE	5005 OL I	00.14	00.14 0004			,				
NIVERVILLE SPRUCE DRIVE 1 - RAW	E235.CI-L	28-May-2024	28-May-2024	28	0 days	•	28-May-2024	28 days	0 days	*
				days						
Anions and Nutrients : Chloride in Water by IC (Low Level)								1		
	5005 011	00.14	00.14		0.1	,	00.14	00.1		,
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E235.CI-L	28-11/1ay-2024	28-May-2024	28	0 days	•	28-May-2024	28 days	0 days	Ŷ
				days						
Anions and Nutrients : Fluoride in Water by IC										
	E225 F	29 May 2024	29 May 2024		0 days	1	28 May 2024	00 day	0 days	
NIVERVILLE SPRUCE DRIVE 1 - RAW	E230.F	∠8-iviay-2024	28-May-2024	28	u days	¥	28-May-2024	∠8 days	u days	Ý
				days					[]	

Page	:	4 of 12
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	1	Niverville Spruce Drive - PWS 151.25

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E235.F	28-May-2024	28-May-2024	28	0 days	✓	28-May-2024	28 days	0 days	✓
				days						
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
		00 May 2004	00 May 2004	0 dava	O davia	,	00 May 2004	0 dava	0 davia	,
NIVERVILLE SPRUCE DRIVE I - RAW	E235.NO3-L	20-101ay-2024	20-11/18y-2024	5 days	0 days	•	20-1viay-2024	5 days	0 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
	E235 NO3-I	28-May-2024	28-May-2024	3 days	0 days	1	28-May-2024	3 days	0 days	1
	2200.1100 E	20 May 2021	20 May 2021	o dayo	ouuyo		20 May 2021	ouuyo	o dayo	,
Aniana and Nutrianta : Nitrita in Water by IC (Low Loval)										
HDPF										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E235.NO2-L	28-May-2024	28-May-2024	3 days	0 days	1	28-May-2024	3 days	0 days	1
		-	2				2	-	-	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E235.NO2-L	28-May-2024	28-May-2024	3 days	0 days	✓	28-May-2024	3 days	0 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E235.SO4	28-May-2024	28-May-2024	28	0 days	✓	28-May-2024	28 days	0 days	1
				days						
Anions and Nutrients : Sulfate in Water by IC										
	5005 004	00.14	00 14		0.1		00 14	00.1	0.1	,
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E235.SO4	28-May-2024	28-May-2024	28	0 days	*	28-May-2024	28 days	0 days	*
				days						
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (lab preserved)	E358_I	28-May-2024	20-May-2024	3 dave	1 days	1	20-May-2024	28 dave	0 dave	1
	L330-L	20-101ay-2024	23-111ay-2024	5 days	1 uays	•	23-111ay-2024	20 uays	0 days	
Organia / Incorposia Carbon - Disactural Organia Carbon by Combustian (for Low										
Amber class dissolved (lab preserved))									
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E358-L	28-May-2024	29-May-2024	3 days	1 days	1	29-May-2024	28 days	0 days	1
		ŗ	2		Í		2	, i	,	

Page	:	5 of 12
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	1	Niverville Spruce Drive - PWS 151.25

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; •	= Withir	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)		F		Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E355-L	28-May-2024	29-May-2024	28	1 days	1	29-May-2024	28 days	1 days	1
				days						
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustio	n (Low Level)									
Amber glass total (sulfuric acid)										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E355-L	28-May-2024	29-May-2024	28	1 days	~	29-May-2024	28 days	1 days	~
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E290	28-May-2024	29-May-2024	14	1 days	1	29-May-2024	14 days	2 days	1
				days						
Physical Tests : Alkalinity Species by Titration										
HDPE										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E290	28-May-2024	29-May-2024	14	1 days	1	29-May-2024	14 days	2 days	✓
				days						
Physical Tests : Colour (True) by Spectrometer (5 CU)										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E329	28-May-2024	29-May-2024	3 days	1 days	×	29-May-2024	3 days	1 days	 ✓
Physical Tests : Colour (True) by Spectrometer (5 CU)										
HDPE										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E329	28-May-2024	29-May-2024	3 days	1 days	1	29-May-2024	3 days	1 days	1
Physical Tests : Conductivity in Water										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E100	28-May-2024	29-May-2024	28	1 days	1	29-May-2024	28 days	2 days	✓
				days						
Physical Tests : Conductivity in Water										
HDPE										
NIVERVILLE SPRUCE DRIVE 2 - TREATED	E100	28-May-2024	29-May-2024	28	1 days	1	29-May-2024	28 days	2 days	×
				days						
Physical Tests : pH by Meter										
HDPE										
NIVERVILLE SPRUCE DRIVE 1 - RAW	E108	28-May-2024	29-May-2024	0.25	24 hrs	×	29-May-2024	0.25	36 hrs	*
				hrs		EHTR-FM		hrs		EHTR-FM

Page	:	6 of 12
Work Order	1	WP2413356
Client	:	Manitoba Conservation & Climate
Project	1	Niverville Spruce Drive - PWS 151.25

Matrix: Water					E٧	aluation: × =	Holding time excee	edance ; •	<pre>/ = Withir</pre>	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Exti	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE NIVERVILLE SPRUCE DRIVE 2 - TREATED	E108	28-May-2024	29-May-2024	0.25 hrs	24 hrs	≭ EHTR-FM	29-May-2024	0.25 hrs	36 hrs	¥ EHTR-FM
Physical Tests : TDS by Gravimetry (Low Level)										
HDPE NIVERVILLE SPRUCE DRIVE 1 - RAW	E162-L	28-May-2024					30-May-2024	7 days	2 days	~
Physical Tests : TDS by Gravimetry (Low Level)										
HDPE NIVERVILLE SPRUCE DRIVE 2 - TREATED	E162-L	28-May-2024					30-May-2024	7 days	2 days	4
Physical Tests : Turbidity by Nephelometry										
HDPE NIVERVILLE SPRUCE DRIVE 1 - RAW	E121	28-May-2024					29-May-2024	3 days	1 days	*
Physical Tests : Turbidity by Nephelometry										
HDPE NIVERVILLE SPRUCE DRIVE 2 - TREATED	E121	28-May-2024					29-May-2024	3 days	1 days	4
Physical Tests : UV Absorbance and Transmittance by Spectrometry										
HDPE NIVERVILLE SPRUCE DRIVE 1 - RAW	E404	28-May-2024					30-May-2024	3 days	2 days	~
Physical Tests : UV Absorbance and Transmittance by Spectrometry										
HDPE NIVERVILLE SPRUCE DRIVE 2 - TREATED	E404	28-May-2024					30-May-2024	3 days	2 days	~
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) NIVERVILLE SPRUCE DRIVE 1 - RAW	E420	28-May-2024	31-May-2024	180 days	3 days	✓	31-May-2024	180 days	3 days	*
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) NIVERVILLE SPRUCE DRIVE 2 - TREATED	E420	28-May-2024	31-May-2024	180 days	3 days	~	31-May-2024	180 days	3 days	~

Matrix: Water Evaluation: **x** = Holding time exceedance ; \checkmark = Within Holding Time Extraction / Preparation Analysis Analyte Group : Analytical Method Sampling Date Method Container / Client Sample ID(s) Eval Preparation Holding Times Eval Analysis Date Holding Times Rec Rec Actual Actual Date Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) NIVERVILLE SPRUCE DRIVE 3 - DISTRIBUTION @ MID POINT E420 28-May-2024 31-May-2024 3 days ✓ 31-May-2024 1 3 days 180 180 days days Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate) 28-May-2024 1 NIVERVILLE SPRUCE DRIVE 1 - RAW E611D 29-May-2024 14 1 days 29-May-2024 14 days 1 days 1 days

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification							
Quality Control Sample Type			unt	Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Alkalinity Species by Titration	E290	1466417	1	17	5.8	5.0	✓	
Ammonia by Fluorescence	E298	1464814	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	1464085	1	2	50.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	1464086	1	5	20.0	5.0	✓	
Colour (True) by Spectrometer (5 CU)	E329	1464370	1	12	8.3	5.0	✓	
Conductivity in Water	E100	1466418	1	14	7.1	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1464659	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	1464084	1	4	25.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	1464087	1	2	50.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	1464088	1	2	50.0	5.0	✓	
pH by Meter	E108	1466416	1	15	6.6	5.0	✓	
Sulfate in Water by IC	E235.SO4	1464089	1	8	12.5	5.0	✓	
TDS by Gravimetry (Low Level)	E162-L	1465322	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	1469033	1	8	12.5	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1464241	1	18	5.5	5.0	✓	
Turbidity by Nephelometry	E121	1464100	1	20	5.0	5.0	✓	
UV Absorbance and Transmittance by Spectrometry	E404	1467792	1	15	6.6	5.0	✓	
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1464486	1	12	8.3	5.0	✓	
Laboratory Control Samples (LCS)								
Alkalinity Species by Titration	E290	1466417	1	17	5.8	5.0	✓	
Ammonia by Fluorescence	E298	1464814	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	1464085	1	2	50.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	1464086	1	5	20.0	5.0	✓	
Colour (True) by Spectrometer (5 CU)	E329	1464370	1	12	8.3	5.0	✓	
Conductivity in Water	E100	1466418	1	14	7.1	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1464659	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	1464084	1	4	25.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	1464087	1	2	50.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	1464088	1	2	50.0	5.0	✓	
pH by Meter	E108	1466416	1	15	6.6	5.0	✓	
Sulfate in Water by IC	E235.SO4	1464089	1	8	12.5	5.0	✓	
TDS by Gravimetry (Low Level)	E162-L	1465322	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	1469033	1	8	12.5	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1464241	1	18	5.5	5.0	1	
Turbidity by Nephelometry	E121	1464100	1	20	5.0	5.0	1	
UV Absorbance and Transmittance by Spectrometry	E404	1467792	1	15	6.6	5.0	√	

Page	:	9 of 12
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.								
Quality Control Sample Type	Count Frequency (%)								
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued									
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1464486	1	12	8.3	5.0	✓		
Method Blanks (MB)									
Alkalinity Species by Titration	E290	1466417	1	17	5.8	5.0	✓		
Ammonia by Fluorescence	E298	1464814	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	1464085	1	2	50.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	1464086	1	5	20.0	5.0	✓		
Colour (True) by Spectrometer (5 CU)	E329	1464370	1	12	8.3	5.0	✓		
Conductivity in Water	E100	1466418	1	14	7.1	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1464659	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	1464084	1	4	25.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	1464087	1	2	50.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	1464088	1	2	50.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	1464089	1	8	12.5	5.0	✓		
TDS by Gravimetry (Low Level)	E162-L	1465322	1	20	5.0	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	1469033	1	8	12.5	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1464241	1	18	5.5	5.0	✓		
Turbidity by Nephelometry	E121	1464100	1	20	5.0	5.0	✓		
UV Absorbance and Transmittance by Spectrometry	E404	1467792	1	15	6.6	5.0	✓		
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1464486	1	12	8.3	5.0	✓		
Matrix Spikes (MS)									
Ammonia by Fluorescence	E298	1464814	1	20	5.0	5.0	✓		
Bromide in Water by IC (Low Level)	E235.Br-L	1464085	1	2	50.0	5.0	✓		
Chloride in Water by IC (Low Level)	E235.CI-L	1464086	1	5	20.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1464659	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	1464084	1	4	25.0	5.0	✓		
Nitrate in Water by IC (Low Level)	E235.NO3-L	1464087	1	2	50.0	5.0	✓		
Nitrite in Water by IC (Low Level)	E235.NO2-L	1464088	1	2	50.0	5.0	✓		
Sulfate in Water by IC	E235.SO4	1464089	1	8	12.5	5.0	1		
Total Metals in Water by CRC ICPMS	E420	1469033	1	8	12.5	5.0	✓		
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1464241	1	18	5.5	5.0	✓		
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1464486	1	12	8.3	5.0	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Winnipeg			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Winnipeg			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	ALS Environmental -			
	Winnipea			
TDS by Gravimetry (Low Level)	E162-L	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,
	ALS Environmental -			with gravimetric measurement of the residue.
	Winnipeg			
Bromide in Water by IC (Low Level) E235.Br-L Water EPA 300.1 (mod) Inorganic anion detection.	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.			
	ALS Environmental -			
	Winnipeg			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
	1 5			

Page	:	11 of 12
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
				carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Winnipeg	14/-+		
Ammonia by Fluorescence	E298	water	Method Fialab 100,	Ammonia in water is determined by automated continuous flow analysis with membrane
			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaidenyde).
	ALS Environmental - Winnined			This method is approved under US EPA 40 CFR Part 136 (May 2021)
Colour (True) by Spectrometer (5 CU)	F329	Water	APHA 2120 C (mod)	Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane
	2023			filter followed by analysis of the filtrate using the platinum-cobalt colourimetric
	ALS Environmental -			method. Colour measurements can be highly pH dependent, and apply to the pH of the
	Winnipeg			sample as received (at time of testing), without pH adjustment.
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorganic
	ALS Environmental -			carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2.
	Winnipeg			NPOC does not include volatile organic species that are purged off with IC. For
				samples where the majority of total carbon (TC) is comprised of IC (which is common),
				this method is more accurate and more reliable than the TOC by subtraction method (i.e.
				TC minus TIC).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)	ALC Environmental			direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	ALS Environmental -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include velocities erganic species that are
	winnipeg			nurged off with IC For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common) this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
UV Absorbance and Transmittance by	E404	Water	APHA 5910 B (mod)	UV Absorbance is determined by first filtering a sample through a 0.45 micron filter,
Spectrometry				followed by UV absorbance measurement in a quartz cell at 254 nm. The analysis is
	ALS Environmental -			carried out without pH adjustment.
	Winnipeg			
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	vvinnipeg			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
VOCa (Fastern Canada List) by Llasda	E611D	Water	EPA 8260D (mod)	Uy tills method.
CC-MS	EOTID	vvalci		volatile organic compounds (voos) are analyzed by static neadspace GC-MS.
	ALS Environmental -			headsnace autosampler causing VOCs to nartition between the advecus phase and
	Winnipeg			the headspace in accordance with Henry's law.
Page	:	12 of 12		
------------	---	--------------------------------------		
Work Order	:	WP2413356		
Client	:	Manitoba Conservation & Climate		
Project	:	Niverville Spruce Drive - PWS 151.25		

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Hardness (Calculated) from Total Ca/Mg	EC100A ALS Environmental - Winnipeg	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-durbid waters.
Ion Balance using Total Metals	EC101A ALS Environmental - Winnipeg	Water	APHA 1030E	Cation Sum (using total metals), Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Saturation Index using Laboratory pH (Ca-T)	EC105A ALS Environmental - Winnipeg	Water	APHA 2330B	Langelier Index provides an indication of scale formation potential at a given pH and temperature, and is calculated as per APHA 2330B Saturation Index. Positive values indicate oversaturation with respect to CaCO3. Negative values indicate undersaturation of CaCO3. This calculation uses laboratory pH measurements and provides estimates of Langelier Index at temperatures of 4, 15, 20, 25, 66, and 77°C. Ryznar Stability Index is an alternative index used for scale formation and corrosion potential.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 ALS Environmental - Winnipeg	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Preparation for Total Organic Carbon by Combustion	EP355 ALS Environmental - Winnipeg	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 ALS Environmental - Winnipeg	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
VOCs Preparation for Headspace Analysis	EP581 ALS Environmental - Winnipeg	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order	[:] WP2413356	Page	: 1 of 14
Client	: Manitoba Conservation & Climate	Laboratory	: ALS Environmental - Winnipeg
Contact	: Marc Balcaen	Account Manager	: Sheriza Rajack-Ahamed
Address	151.25 - Niverville Spruce Drive - PWS Box 267	Address	: 1329 Niakwa Road East, Unit 12
	Niverville MB Canada R0A 1E0		Winnipeg, Manitoba Canada R2J 3T4
Telephone	:	Telephone	:+1 204 255 9720
Project	: Niverville Spruce Drive - PWS 151.25	Date Samples Received	:28-May-2024 09:46
PO	:	Date Analysis Commenced	:28-May-2024
C-O-C number	:	Issue Date	:03-Jun-2024 12:03
Sampler	:		
Site	Niverville Spruce Drive - PWS 151.25 Op Id: 42862		
Quote number	2024 WTP Chemistry		
No. of samples received	: 3		
No. of samples analysed	:3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Gerry Vera	Analyst	Winnipeg Organics, Winnipeg, Manitoba
Rhovee Guevarra		Winnipeg Inorganics, Winnipeg, Manitoba
Rhovee Guevarra		Winnipeg Metals, Winnipeg, Manitoba

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1464100)										
WP2413277-001	Anonymous	Turbidity		E121	0.10	NTU	14.7	14.6	0.820%	15%	
Physical Tests (QC	Lot: 1464370)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Colour, true		E329	5.0	CU	<5.0	<5.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 1465322)										
WP2413323-002	Anonymous	Solids, total dissolved [TDS]		E162-L	15.0	mg/L	808	834	3.11%	20%	
Physical Tests (QC	Lot: 1466416)										
WP2413404-005	Anonymous	рН		E108	0.10	pH units	7.73	7.65	1.04%	4%	
Physical Tests (QC	Lot: 1466417)										
WP2413404-005	Anonymous	Alkalinity, total (as CaCO3)		E290	2.0	mg/L	39.9	40.3	0.998%	20%	
Physical Tests (QC	Lot: 1466418)										
WP2413404-005	Anonymous	Conductivity		E100	1.0	μS/cm	139	138	0.433%	10%	
Physical Tests (QC	Lot: 1467792)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Absorbance, UV (@ 254nm)		E404	0.0050	AU/cm	0.0280	0.0290	0.0010	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1464084)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.853	0.835	2.21%	20%	
Anions and Nutrient	ts (QC Lot: 1464085)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Bromide	24959-67-9	E235.Br-L	0.050	mg/L	0.191	0.191	0.0001	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1464086)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Chloride	16887-00-6	E235.CI-L	0.10	mg/L	182	182	0.198%	20%	
Anions and Nutrient	ts (QC Lot: 1464087)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1464088)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1464089)										
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	34.7	34.1	1.55%	20%	
Anions and Nutrient	ts (QC Lot: 1464814)										

Page	:	4 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	÷	Niverville Spruce Drive - PWS 151.25

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	s (QC Lot: 1464814) - c	ontinued									
WP2413333-003	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0329	0.0403	0.0074	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 146424	1)									
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Carbon, total organic [TOC]		E355-L	0.50	mg/L	1.71	1.70	0.008	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 146465	9)									
WP2413300-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	20.6	20.9	1.68%	20%	
Total Metals (QC Lo	ot: 1469033)										
WP2413345-003	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		Antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00057	0.00053	0.00003	Diff <2x LOR	
		Barium, total	7440-39-3	E420	0.00010	mg/L	0.0451	0.0448	0.736%	20%	
		Beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Boron, total	7440-42-8	E420	0.010	mg/L	0.075	0.076	0.002	Diff <2x LOR	
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.000050	0	Diff <2x LOR	
		Calcium, total	7440-70-2	E420	0.050	mg/L	140	141	1.13%	20%	
		Cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.00321	0.00315	0.00006	Diff <2x LOR	
		Iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		Lead, total	7439-92-1	E420	0.000050	mg/L	0.000288	0.000289	0.0000003	Diff <2x LOR	
		Lithium, total	7439-93-2	E420	0.0010	mg/L	0.0458	0.0457	0.199%	20%	
		Magnesium, total	7439-95-4	E420	0.0050	mg/L	69.3	69.1	0.346%	20%	
		Molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000950	0.000909	4.44%	20%	
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00118	0.00118	0.000001	Diff <2x LOR	
		Phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, total	7440-09-7	E420	0.050	mg/L	5.00	4.97	0.519%	20%	
		Rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00215	0.00205	4.77%	20%	
		Selenium, total	7782-49-2	E420	0.000050	mg/L	0.00514	0.00545	5.74%	20%	
		Silicon, total	7440-21-3	E420	0.10	mg/L	12.4	12.4	0.0570%	20%	
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium. total	7440-23-5	E420	0.050	ma/L	41.7	40.2	3.59%	20%	
		Strontium total	7440-24-6	E420	0.00020	ma/L	0.599	0.578	3.53%	20%	
		Sulfur, total	7704-34-9	E420	0.50	ma/L	120	120	0.456%	20%	
										/ 0	

Page	:	5 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Sub-Matrix: Water					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 1469033) - continu	ber									
WP2413345-003	Anonymous	Tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		Thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Uranium, total	7440-61-1	E420	0.000010	mg/L	0.0114	0.0112	2.65%	20%	
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
		Zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 14	464486)									
WP2413269-001	Anonymous	Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

ub-Matrix. Water					
nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 1464100)					
Turbidity	E121	0.1	NTU	<0.10	
hysical Tests (QCLot: 1464370)					
Colour, true	E329	5	CU	<5.0	
hysical Tests (QCLot: 1465322)					
Solids, total dissolved [TDS]	E162-L	3	mg/L	<3.0	
hysical Tests (QCLot: 1466417)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
hysical Tests (QCLot: 1466418)					
Conductivity	E100	1	μS/cm	<1.0	
hysical Tests (QCLot: 1467792)					
Absorbance, UV (@ 254nm)	E404	0.005	AU/cm	<0.0050	
nions and Nutrients (QCLot: 1464084)					
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 1464085)					
Bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 1464086)					
Chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
nions and Nutrients (QCLot: 1464087)					
Nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
nions and Nutrients(QCLot: 1 <u>464088)</u>					
Nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 1 <u>464089)</u>					
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 1464814)					
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Prganic / Inorganic Carbon (QCLot: 14642	41)				
Carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Prganic / Inorganic Carbon (QC <u>Lot: 14646</u>	59)				
Carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 1469033)					
Aluminum total	7429-90-5 E420	0.003	ma/L	<0.0030	
Aluminum, total			5	0.0000	

Page	:	7 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1469033) - conti	nued					
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
Beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
Boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
Calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
Cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	

Page	:	8 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1469033) - con	tinued					
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Volatile Organic Compounds (QCLo	t: 1464486)					
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	' Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 1464100)										
Turbidity		E121	0.1	NTU	200 NTU	90.5	85.0	115		
Physical Tests (QCLot: 1464370)										
Colour, true		E329	5	CU	250 CU	100	85.0	115		
Physical Tests (QCLot: 1465322)										
Solids, total dissolved [TDS]		E162-L	3	mg/L	1000 mg/L	93.2	85.0	115		
Physical Tests (QCLot: 1466416)										
pH		E108		pH units	7 pH units	100	98.0	102		
Physical Tests (QCLot: 1466417)										
Alkalinity, total (as CaCO3)		E290	1	mg/L	100 mg/L	101	85.0	115		
Physical Tests (QCLot: 1466418)										
Conductivity		E100	1	μS/cm	1410 µS/cm	99.7	90.0	110		
Physical Tests (QCLot: 1467792)		E 40.4	0.005	A11/	0.500 AUV	100	05.0	445		
Absorbance, UV (@ 254nm)		E404	0.005	AU/cm	0.582 AU/cm	102	85.0	115		
Anions and Nutrients (QCLot: 1464084)	16984-48-8	E235 E	0.02	mg/l	1 mg/l	101	90.0	110		
Anions and Nutrients (QCLot: 1464085) Bromide	24959-67-9	E235.Br-L	0.05	ma/L	0.5 mg/L	102	85.0	115		
				3	J					
Chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110		
Aniona and Nutrianta (OCI at: 1464097)					Ŭ					
Nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110		
Anions and Nutrients (OCL of: 1464088)										
Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	100	90.0	110		
Anions and Nutrients (OCI ot: 1464089)								1		
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 1464814)										
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	95.2	85.0	115		
Organic / Inorganic Carbon (QCLot: 1464241)										
Carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	103	80.0	120		
Organic / Inorganic Carbon (QCLot: 1464659)										

Page	:	10 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Ada/aAdd with a baseBaseResure (M)BaseMarket (M)Market (M	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
AnalyCodeMateRegulR			-			Spike	Recovery (%)	Recovery	Limits (%)		
Organic Carbon QCC Lot: 146459) - continued SSML 0.5 mgL 8.57 mgL 10 800 100 100 Cols Materia dogune [DOC] - SSML 0.03 mgL 2 mgL 90.3 60.0 102 - Cols Materia (CCL or 1469033) -	Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Carbon, description - ESSA. 0.5 mgA. 8.7 mgA. 110 8.0.0 103<	Organic / Inorganic Carbon (QCLot: 14	164659) - continued									
Carbon Mathematical Colours Markane Mathematical Markane Marka	Carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	110	80.0	120		
Total Models (OCL or: 148003) 4/22-00 6/20 mg/L 2/mg/L 0.03 80.0 1/20 main matrix Anterion, Kal 740-360 420 0.001 mg/L 1 mg/L 104 80.0 120											
Alarning, bala//Ad-8006200.001mgl2 mgl, mgl0.001040.001020Anenic, tala//Ad-8426200.001mgl,1 mgl,11gl,0.010.00100Bartur, fold//Ad-8436200.0001mgl,0.1mgl,0.820.000100Bartur, fold//Ad-8436200.00002mgl,1 mgl,0.820.00100Bartur, fold//Ad-8436200.010mgl,1 mgl,0.820.00100Cachur, faal//Ad-8436200.010mgl,0.1 mgl,0.820.00100Cachur, faal//Ad-8436200.000mgl,0.5 mgl,0.1020.000Cachur, faal//Ad-8446200.000mgl,0.25 mgl,0.80100Cachur, faal//Ad-8446200.000mgl,0.25 mgl,0.80100Cachur, faal//Ad-8446200.000mgl,0.25 mgl,0.80100Cachur, faal//Ad-8446200.000mgl,0.25 mgl,0.80100Cachur, faal//Ad-8446200.000mgl,0.25 mgl,0.80100Cachur, faal//Ad-8446200.000mgl,1 mgl,1 mgl,100Cachur, faal//Ad-8466200.000mgl, <td< td=""><td>Total Metals (QCLot: 1469033)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Total Metals (QCLot: 1469033)										
Artimeny, Islail744-952F4200.001mgl.1 mgl.11mgl.97.890.00120Barum, Islail744-942F40460000.001mgl.0.025 mgl.10380.00120Barum, Islail744-942F400.0000mgl.0.1 mgl.89.280.00120Barum, Islail744-942F400.0000mgl.1 mgl.89.280.00120Barum, Islail744-942F400.00000mgl.1 mgl.89.280.00120Barum, Islail744-942F400.00000mgl.1 mgl.89.280.00120Calsium, Islail744-942F400.0000mgl.0.05 mgl.19.380.00120Calsium, Islail744-942F400.000mgl.0.05 mgl.91.280.00120Calsium, Islail744-942F400.001mgl.0.25 mgl.80.0100Calsium, Islail744-942F400.001mgl.1 mgl.85.880.0120Calsium, Islail749.942F400.001mgl.1 mgl.85.880.0120Calsium, Islail749.942F400.001mgl.1 mgl.85.880.0120Calsium, Islail749.942F400.001mgl.1 mgl.85.880.0120 <td>Aluminum, total</td> <td>7429-90-5</td> <td>E420</td> <td>0.003</td> <td>mg/L</td> <td>2 mg/L</td> <td>90.3</td> <td>80.0</td> <td>120</td> <td></td>	Aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	90.3	80.0	120		
Areade, Casal7440-382Fx300.0001mgL1 mgL0.78780.0090.0090.000090.00000090.00000090.00000090.00000090.00000090.0	Antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	104	80.0	120		
Barum, total7440-37FAO0.0001mgl0.2 mglL0.1 mglL0.800.000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.1 mglL0.80000.10001 mglL0.80100.10001 mglL0.80100.10000.10000.10000.0	Arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	97.8	80.0	120		
Berylinen, taniTypePeriod0.00000mglu0.100188.2080.001000090.0000Bismuth, taliType4200.00005mglu1 mglu88.2080.0012006.0000Gadmin, taliType40.0080.000.00005mglu0.00005100089.2080.0012006.0000Gadmin, taliType40.0040.0090.000090.000 </td <td>Barium, total</td> <td>7440-39-3</td> <td>E420</td> <td>0.0001</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>103</td> <td>80.0</td> <td>120</td> <td></td>	Barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
Bianuch, tabil7440-069Fe200.00005mgL1 rmgL99.00.000.010.00Baron, tabil7440-429Fe200.01mgL0.1 mgL65.280.0120Calcium, tobil7440-429Fe200.05mgL0.0 mgL90.0080.0120Calcium, tobil7440-42Fe200.05mgL0.0 mgL91.380.0120Cabam, tobil7440-42Fe200.0001mgL0.0 fmgL91.380.0120Cohan, tobil7440-44Fe200.0001mgL0.0 fmgL91.380.0120Cohan, tobil7440-45Fe200.0005mgL0.0 fmgL91.380.0120tron, tobil7440-45Fe200.0005mgL0.5 mgL95.880.0120tron, tobil749.95Fe200.0005mgL0.5 mgL95.880.0120tron, tobil749.95Fe200.0005mgL0.5 mgL95.880.0120tron, tobil749.95Fe200.0005mgL0.5 mgL95.880.0120tron, tobil749.95Fe200.0005mgL0.5 mgL95.880.0120tron, tobil749.95Fe200.0005mgL0.5 mgL95.880.0120tobipsettem, tobil749.95Fe	Beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	89.2	80.0	120		
Beon, total7440-43F4200.01mgl.1 rmgl.65.20.00100100Cadmun, total7440-42F4200.000005mgl.6.0 mgl.0.01 mgl.99.280.010.0Cadmun, total7440-42F4200.00001mgl.0.05 mgl.10.280.010.0Chamun, total7440-44F4200.0005mgl.0.25 mgl.91.380.010.0Chamun, total7440-44F4200.0005mgl.0.25 mgl.93.280.010.0Capper, total7440-44F4200.001mgl.0.25 mgl.93.280.010.0Capper, total749.945F4200.001mgl.0.5 mgl.85.680.010.0Cadnut, total749.945F4200.001mgl.0.5 mgl.85.680.010.0Unity, total749.945F4200.005mgl.0.5 mgl.86.680.010.0Wagnesker, total749.945F4200.005mgl.0.5 mgl.86.680.010.0Wagnesker, total749.947F4200.005mgl.0.5 mgl.86.780.010.0Wagnesker, total749.947F4200.005mgl.10.0 mgl.86.680.010.0Wagnesker, total749.947F4200.005mgl.10.0 mgl.86.680.0	Bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	99.6	80.0	120		
Cadmam, totalCadmam, totalP40403F400P000000mgl.O.1 mgl.P9280.00120Cadium, totalT440-702F4000.050mgl.Songi.L92.980.00120Chomm, totalT440-473F4000.0001mgl.0.25 mgl.91.380.00120Chomm, totalT440-48F4000.0000mgl.0.25 mgl.91.380.00120Cobat, totalT440-48F4000.0000mgl.0.25 mgl.81.380.00120Cobat, totalT440-48F4000.0000mgl.0.5 mgl.81.380.00120Lead, totalT439-894F4000.0000mgl.0.5 mgl.85.880.00120Magnese, totalT439-894F4000.0000mgl.0.5 mgl.85.480.00120Magnese, totalT439-894F4000.0000mgl.0.5 mgl.85.480.00120Magnese, totalT440-49F4000.0000mgl.0.5 mgl.85.480.00120Wick, totalT440-49F4000.0000mgl.0.5 mgl.19.680.0120Wick, totalT440-49F4000.0000mgl.0.5 mgl.19.680.0120Wick, totalT440-49F40060.000.0000mgl.0.5 mgl.10.680.0 <td>Boron, total</td> <td>7440-42-8</td> <td>E420</td> <td>0.01</td> <td>mg/L</td> <td>1 mg/L</td> <td>85.2</td> <td>80.0</td> <td>120</td> <td></td>	Boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	85.2	80.0	120		
Cackam, takal7440-70>84200.05mgl,50 mgl,92.980.001209.7Cesiur, tokal74046-88200.0000mgl,0.05 mgl,91.380.001209.7Cober, tokal74046-88200.0000mgl,0.25 mgl,91.3080.001209.7Cober, tokal74046-88200.0000mgl,0.25 mgl,93.0080.001209.7Cober, tokal74046-88200.0000mgl,0.25 mgl,95.880.001209.7Cober, tokal74949-88200.0000mgl,0.5 mgl,95.880.001209.7Lad, tokal74949-88200.0000mgl,0.5 mgl,95.880.001209.7Magnesiur, tokal74949-88200.0000mgl,0.25 mgl,98.080.001209.7Magnesiur, tokal74949-88200.0000mgl,0.5 mgl,98.880.001209.7Magnesiur, tokal74949-88200.0000mgl,0.5 mgl,98.480.001209.7Magnesiur, tokal74949-78200.0000mgl,0.5 mgl,98.480.001209.7Magnesiur, tokal74949-78200.0000mgl,0.1 mgl,88.480.001209.7Magnesiur, tokal74049-78200.0000mgl,0.5 mgl,101mgl,88.480.001209.7	Cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	99.2	80.0	120		
Casium, totalT440-402E420.0001mg/L0.05 mg/L0.10210.2010.001	Calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	92.9	80.0	120		
Chromun, talaiT404-743E420.0005mg/L0.25 mg/L91.380.0120Cobalt, talaiT404-84E420.0005mg/L0.25 mg/L93.080.0120tron, talaiT404-84E420.0005mg/L0.25 mg/L95.880.00120tron, talaiT439-82E420.0015mg/L0.67mg/L95.880.00120Magnesium, talaiT439-82E420.001mg/L0.65mg/L80.00120Magnesium, talaiT439-82E420.001mg/L0.65mg/L83.880.00120Magnesium, talaiT439-82E420.000mg/L0.65mg/L83.980.00120Magnesium, talaiT439-83E420.000mg/L0.65mg/L83.980.00120Magnesium, talaiT439-84E420.000mg/L0.65mg/L91.880.00120Magnesium, talaiT404-73E420.000mg/L0.65mg/L91.880.00120Magnesium, talaiT404-74E420.000mg/L101mg/L85.480.00120Magnesium, talaiT404-74E420.000mg/L101mg/L85.480.00120Magnesium, talaiT404-74E420.000mg/L101mg/L85.480.00120Magnesium, tal	Cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	102	80.0	120		
Cobalt, totalT440-48F200.001mgL0.25 mgL93.080.010.010.0Coper, totalT40-000F200.001mgL0.25 mgL93.280.010.010.0ton, totalT49.40F200.0010mgL0.5 mgL85.880.010.0Linhur, totalT49.40F200.0010mgL0.5 mgL85.680.010.0Magnaese, totalT49.494F200.001mgL0.25 mgL85.680.010.0Magnaese, totalT49.494F200.001mgL0.25 mgL85.680.010.0Magnaese, totalT49.494F200.001mgL0.25 mgL99.880.010.0Magnaese, totalT49.494F200.005mgL0.5 mgL91.880.010.0Vickl, totalT40.402F200.005mgL0.5 mgL91.880.010.0Vickl, totalT72.404F200.005mgL0.1 mgL94.880.010.0Vickl, totalT72.404F200.005mgL0.1 mgL84.880.010.0Vickl, totalT72.404F200.005mgL0.1 mgL84.880.010.0Vickl, totalT72.404F200.005mgL0.1 mgL84.880.010.0Vickl, totalT74.404F20 <td< td=""><td>Chromium, total</td><td>7440-47-3</td><td>E420</td><td>0.0005</td><td>mg/L</td><td>0.25 mg/L</td><td>91.3</td><td>80.0</td><td>120</td><td></td></td<>	Chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	91.3	80.0	120		
Copper, total7440-50-84200.0005mg/L0.25 mg/L93.280.0120tron, total7430-9826200.010mg/L1 mg/L85.880.0120Lead, total7430-9826200.001mg/L0.5 mg/L95.880.0120Magnesium, total7439-9546200.001mg/L0.25 mg/L96.480.0120Magnesium, total7439-9556200.0001mg/L0.25 mg/L99.880.0120Molydenum, total7439-9656200.0001mg/L0.25 mg/L99.880.0120Nokek, total7439-9656200.0005mg/L0.5 mg/L99.880.0120Nokek, total7439-9656200.0005mg/L0.5 mg/L91.680.0120Nokek, total7400-076200.0005mg/L0.5 mg/L91.680.0120Nokek, total7400-076200.005mg/L10 mg/L94.880.0120Nukek, total7440-077400-076200.005mg/L10 mg/L85.680.0120Nukek, total7440-776200.005mg/L10 mg/L10 mg/L85.680.0120Nukek, total7440-756200.0005mg/L10 mg/L10 mg/L85.680.0120	Cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	93.0	80.0	120		
ron, total7439-8664200.01mg/L1 mg/L85.880.012.0Lead, total7439-82F4200.0005mg/L0.5 mg/L95.880.012.0Magnesiur, total7439-84F4200.000mg/L0.25 mg/L96.480.012.0Magnesiur, total7439-85F4200.0005mg/L0.25 mg/L93.980.012.0Nicke, total7439-87F4200.0005mg/L0.25 mg/L93.880.012.0Nicke, total7439-87F4200.0005mg/L0.5 mg/L91.880.012.0Nicke, total7439-87F4200.0005mg/L0.5 mg/L94.880.012.0Nicke, total7404-07F4200.05mg/L10.1 mg/L94.880.012.0Nicke, total7404-07F4200.05mg/L10.1 mg/L94.880.012.0Nicke, total7404-07F4200.000mg/L10.1 mg/L94.880.012.0Selenium, total7404-07F4200.0001mg/L10.1 mg/L84.580.012.0Siloch, total7404-25F4200.001mg/L0.1 mg/L84.580.012.0Siloch, total7404-25F4200.001mg/L0.1 mg/L84.580.012.0Siloch, to	Copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	93.2	80.0	120		
Lead, total7439-92F4200.00005mg/L0.5 mg/L95.880.0120Lihium, total7439-93-2F4200.011mg/L0.25 mg/L85.680.0120Magnese, total7439-95F4200.005mg/L602mg/L98.480.0120Moybdenum, total7439-95F4200.0005mg/L0.25 mg/L99.880.0120Nickel, total740-020F4200.0005mg/L0.5 mg/L91.680.0120Phosphorus, total7723-140F4200.005mg/L0.5 mg/L91.680.0120Phosphorus, total7723-140F4200.005mg/L0.5 mg/L91.680.0120Phosphorus, total7723-140F4200.002mg/L0.1 mg/L84.580.0120Subidium, total740-07F4200.002mg/L0.1 mg/L84.580.0120Subidium, total7740-42F4200.002mg/L10 mg/L88.580.0120Silver, total740-72F4200.002mg/L10 mg/L88.580.0120Silver, total740-72F4200.002mg/L0.1 mg/L88.580.0120Silver, total740-72F4200.002mg/L0.5 mg/L88.580.0120Silver	Iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	85.8	80.0	120		
Lithium, total7439-932E4200.001mg/L0.25 mg/L85.680.0120Magnesium, total7439-954E4200.005mg/L0.25 mg/L96.480.0120Manganese, total7439-965E4200.0005mg/L0.25 mg/L99.880.0120Molybdenum, total7439-967E4200.0005mg/L0.5 mg/L99.880.0120Nickel, total740-020E4200.0005mg/L10 mg/L91.680.0120Pobsphorus, total773-140E4200.005mg/L10 mg/L94.880.0120Potassium, total740-027E4200.0005mg/L10 mg/L94.880.0120Potassium, total740-037E4200.0005mg/L11 mg/L94.880.0120Potassium, total740-047E4200.0005mg/L11 mg/L94.880.0120Silicin, total740-047E4200.0005mg/L11 mg/L94.880.0120Silicin, total740-047E4200.0005mg/L11 mg/L84.580.0120Silicin, total740-248E4200.0005mg/L11 mg/L84.580.0120Silicin, total740-245E4200.0002mg/L0.05 mg/L10 mg/L10 mg/L10 mg	Lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	95.8	80.0	120		
Magnesium, total7439-954Fe2Q0.005mg/L56 0mg/L96.480.0120Manganese, total7439-965Fe2Q0.0001mg/L0.25 mg/L93.980.0120Molybearum, total7439-987Fe2Q0.00005mg/L0.25 mg/L99.880.00120Nickel, total7440-020Fe2Q0.0005mg/L0.5 mg/L99.880.00120Phosphorus, total7723-140Fe2Q0.005mg/L10 ng/L94.880.00120Phosphorus, total7440-77Fe2Q0.002mg/L0.1 mg/L98.580.00120Rubidium, total7440-77Fe2Q0.0005mg/L0.1 mg/L98.580.00120Subdium, total7440-77Fe2Q0.0005mg/L0.1 mg/L98.580.00120Subdium, total7440-74Fe2Q0.0005mg/L0.1 mg/L88.680.00120Subdium, total7440-74Fe2Q0.0005mg/L10 mg/L88.680.00120Subdium, total7440-74Fe2Q0.0001mg/L10 mg/L88.680.00120Subdium, total740-74Fe2Q0.0002mg/L0.1 mg/L84.580.00120Subdium, total740-74Fe2Q0.0002mg/L0.1 mg/L10180.01	Lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	85.6	80.0	120		
Manganese, total7439-965E4200.0001mg/L0.25 mg/L93.980.0120Molydenum, total7439-987E4200.0005mg/L0.5 mg/L99.880.0120Nickel, total7440-020E4200.0005mg/L0.5 mg/L91.680.0120Phosphorus, total7723-140E4200.05mg/L10 mg/L94.880.0120Potassim, total7440-07E4200.05mg/L50 mg/L85.480.0120Rubidium, total7440-17E4200.0005mg/L0.1 mg/L98.580.0120Selenium, total7440-27E4200.0005mg/L0.1 mg/L88.680.0120Silcon, total7440-27E4200.0005mg/L10 mg/L88.680.0120Silcon, total7440-27E4200.0001mg/L10 mg/L88.680.0120Silcon, total740-245E4200.0002mg/L0.1 mg/L91.680.0120Solium, total740-245E4200.0002mg/L0.25 mg/L10180.0120Sulfur, total740-245E4200.0002mg/L0.0 mg/L103.80.0120Sulfur, total740-245E4200.0002mg/L0.1 mg/L103.80.0120 </td <td>Magnesium, total</td> <td>7439-95-4</td> <td>E420</td> <td>0.005</td> <td>mg/L</td> <td>50 mg/L</td> <td>96.4</td> <td>80.0</td> <td>120</td> <td></td>	Magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	96.4	80.0	120		
Molybdenum, total7439-987F4200.00005mg/L0.25 mg/L99.880.0120Nickel, total7440-020F4200.0005mg/L0.5 mg/L91.680.0120Pospborus, total7723-140F4200.05mg/L10 mg/L94.880.0120Potassium, total7440-097F4200.05mg/L50 mg/L85.480.0120Selenium, total7440-177F4200.00025mg/L0.1 mg/L98.580.0120Silcen, total7462-45F4200.00055mg/L10 mg/L88.680.0120Silcen, total7440-27F4200.1mg/L10 mg/L88.680.0120Silcen, total7440-245F4200.1mg/L0.1 mg/L88.680.0120Silcen, total7440-245F4200.0002mg/L0.1 mg/L88.680.0120Silcen, total7440-245F4200.0002mg/L0.1 mg/L88.580.0120Soltur, total7440-245F4200.0002mg/L50 mg/L10180.0120Soltur, total7440-245F4200.0002mg/L50 mg/L10180.0120Soltur, total7440-245F4200.0002mg/L50 mg/L10180.0120 <tr< td=""><td>Manganese, total</td><td>7439-96-5</td><td>E420</td><td>0.0001</td><td>mg/L</td><td>0.25 mg/L</td><td>93.9</td><td>80.0</td><td>120</td><td></td></tr<>	Manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	93.9	80.0	120		
Nickel, total7440-020E4200.0005mg/L0.5 mg/L91.680.0120Phosphorus, total7723-140E4200.05mg/L10 mg/L94.880.0120Potassium, total7440-077E4200.05mg/L50 mg/L85.480.0120Rubidium, total7440-177E4200.0002mg/L0.1 mg/L98.580.0120Selenium, total7782-492E4200.0005mg/L1 mg/L88.680.0120Silicon, total7440-213E4200.0001mg/L10 mg/L88.680.0120Silicon, total7440-224E4200.0001mg/L0.1 mg/L88.680.0120Solium, total7440-235E4200.0001mg/L0.1 mg/L88.680.0120Solium, total7440-245E4200.0002mg/L0.25 mg/L10180.0120Solium, total7440-245E4200.0002mg/L0.25 mg/L10180.0120Solium, total7440-245E4200.0002mg/L0.1 mg/L84.580.0120Solium, total7440-246E4200.0002mg/L0.1 mg/L103.080.0120Fellurium, total7440-246E4200.0001mg/L101103.080.0120 <td>Molybdenum, total</td> <td>7439-98-7</td> <td>E420</td> <td>0.00005</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>99.8</td> <td>80.0</td> <td>120</td> <td></td>	Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.8	80.0	120		
Phosphorus, total7723-14084200.05mg/L10 mg/L94.880.0120Potassium, total7440-09764200.05mg/L50 mg/L50 mg/L85.480.0120Rubidium, total740-17764200.0002mg/L0.1 mg/L98.580.0120Selenium, total7782-49264200.0005mg/L1 mg/L88.680.0120Silicon, total7440-21364200.0001mg/L10 mg/L88.180.0120Silicon, total7440-24464200.0001mg/L0.1 mg/L88.580.0120Solum, total7440-24564200.0002mg/L50 mg/L88.580.0120Solum, total740-24564200.0002mg/L50 mg/L84.580.0120Solum, total740-24564200.0002mg/L50 mg/L84.580.0120Solum, total740-24564200.0002mg/L50 mg/L84.580.0120Solum, total740-24564200.0002mg/L50 mg/L10180.0120Solum, total740-24564200.0001mg/L60 mg/L10180.0120Felurium, total740-24564200.0001mg/L101 mg/L94.880.0120<	Nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	91.6	80.0	120		
Pedassium, total7440-097E4200.05mg/L50 mg/L85.486.0120Rubidium, total740-077E4200.0002mg/L0.1 mg/L98.580.0120Selenium, total7782-492E4200.0005mg/L1 mg/L88.680.0120Silicon, total740-273E4200.1mg/L10 mg/L89.180.0120Silver, total740-224E4200.0001mg/L0.1 mg/L91.680.0120Sodium, total740-235E4200.05mg/L50 mg/L88.580.0120Sodiur, total740-245E4200.002mg/L50 mg/L10180.0120Sulfur, total740-245E4200.002mg/L50 mg/L10180.0120Sulfur, total740-245E4200.002mg/L50 mg/L10180.0120Fellurium, total740-245E4200.002mg/L50 mg/L10380.0120Fullum, total740-245E4200.0001mg/L1 mg/L10380.0120Fullum, total740-245E4200.0001mg/L1 mg/L94.880.0120Fullum, total740-245E4200.0001mg/L1 mg/L94.680.0120Fullum, total <t< td=""><td>Phosphorus, total</td><td>7723-14-0</td><td>E420</td><td>0.05</td><td>mg/L</td><td>10 mg/L</td><td>94.8</td><td>80.0</td><td>120</td><td></td></t<>	Phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	94.8	80.0	120		
Rubidium, total7440-177E4200.0002mg/L0.1 mg/L98.588.00120Selenium, total7782-492E4200.0005mg/L1 mg/L88.680.00120Silicon, total7440-213E4200.01mg/L0.1 mg/L91.680.00120Soldum, total7440-224E4200.0001mg/L0.1 mg/L91.680.00120Soldum, total7440-235E4200.002mg/L50 mg/L88.580.00120Solfur, total740-246E4200.002mg/L0.25 mg/L10180.00120Sulfur, total7704-349E4200.002mg/L50 mg/L84.580.00120Fellurium, total1349-800E4200.002mg/L0.1 mg/L10380.00120Thallium, total740-246E4200.001mg/L0.1 mg/L94.880.00120Thoium, total740-246E4200.001mg/L0.1 mg/L94.880.00120Thoium, total740-246E4200.001mg/L0.1 mg/L94.880.00120Thoium, total740-246E4200.001mg/L0.1 mg/L94.880.00120Thoium, total740-246E4200.001mg/L0.5 mg/L10280.00120 </td <td>Potassium, total</td> <td>7440-09-7</td> <td>E420</td> <td>0.05</td> <td>mg/L</td> <td>50 mg/L</td> <td>85.4</td> <td>80.0</td> <td>120</td> <td></td>	Potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	85.4	80.0	120		
Selenium, total 7782-492 E420 0.00005 mg/L 1 mg/L 88.6 80.0 120 Silicon, total 7440-213 E420 0.1 mg/L 10 mg/L 89.1 80.0 120 Siliver, total 7440-224 E420 0.00001 mg/L 0.1 mg/L 91.6 80.0 120 Sodium, total 7440-224 E420 0.0002 mg/L 50 mg/L 88.5 80.0 120 Stortium, total 7440-246 E420 0.0002 mg/L 50 mg/L 88.5 80.0 120 Sulfur, total 7440-246 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 Sulfur, total 7704-349 E420 0.0002 mg/L 50 mg/L 84.5 80.0 120 Fellurium, total 13494-809 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 </td <td>Rubidium, total</td> <td>7440-17-7</td> <td>E420</td> <td>0.0002</td> <td>mg/L</td> <td>0.1 mg/L</td> <td>98.5</td> <td>80.0</td> <td>120</td> <td></td>	Rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	98.5	80.0	120		
Silion, total7440-21-3E4200.1mg/L10 mg/L89.180.0120Silver, total7440-24-4E4200.0001mg/L0.1 mg/L91.680.0120Sodium, total7440-24-5E4200.050mg/L50 mg/L88.580.0120Stortium, total7440-24-6E4200.0002mg/L0.25 mg/L10180.0120Sulfur, total7704-34-9E4200.500mg/L50 mg/L84.580.0120Fellurium, total13494-80-9E4200.0002mg/L0.1 mg/L10380.0120Fellurium, total740-24-9E4200.0001mg/L0.1 mg/L94.880.0120Forium, total740-24-9E4200.0001mg/L0.1 mg/L94.680.0120Forium, total740-24-9E4200.0001mg/L0.1 mg/L94.680.0120Forium, total740-24-9E4200.0001mg/L0.1 mg/L94.680.0120Fin, total740-24-9E4200.0001mg/L0.1 mg/L94.680.0120Fin, total740-24-9E4200.0001mg/L0.5 mg/L10280.0120Fin, total740-24-9E4200.0001mg/L0.5 mg/L10280.0120 </td <td>Selenium, total</td> <td>7782-49-2</td> <td>E420</td> <td>0.00005</td> <td>mg/L</td> <td>1 mg/L</td> <td>88.6</td> <td>80.0</td> <td>120</td> <td></td>	Selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	88.6	80.0	120		
Silver, total7440-224E4200.0001mg/L0.1 mg/L91.680.0120Sodium, total7440-235E4200.05mg/L50 mg/L88.580.0120Strontium, total740-246E4200.0002mg/L0.25 mg/L10180.0120Sulfur, total7704-349E4200.55mg/L50 mg/L84.580.0120Fellurium, total13494-809E4200.0002mg/L0.1 mg/L10380.0120Fnallium, total740-26E4200.0001mg/L1 mg/L94.880.0120Fnallium, total740-26E4200.0001mg/L0.1 mg/L94.680.0120Fnallium, total740-26E4200.0001mg/L0.1 mg/L94.680.0120Fnorium, total740-26E4200.0001mg/L0.5 mg/L10280.0120Fnorium, total740-27E4200.0001mg/L0.5 mg/L10280.0120Fin, total740-315E4200.0001mg/L0.5 mg/L10280.0120	Silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	89.1	80.0	120		
Sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 88.5 80.0 120 Strontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 Sulfur, total 7704-34-9 E420 0.55 mg/L 50 mg/L 84.5 80.0 120 Fellurium, total 13494-809 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Fnallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Fnallium, total 7440-28-0 E420 0.0001 mg/L 0.1 mg/L 94.8 80.0 120 Fnorum, total 7440-23-1 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Fin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	91.6	80.0	120		
Stontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 101 80.0 120 Sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 84.5 80.0 120 Tellurium, total 13494-80 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Thalium, total 7440-280 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Thorium, total 7440-280 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Thorium, total 7440-280 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Tin, total 7440-315 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	88.5	80.0	120		
Sulfur, total 7704-34-9 E420 0.5 mg/L 50 mg/L 84.5 80.0 120 Tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Thorium, total 7440-31-5 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	101	80.0	120		
Tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Fin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	84.5	80.0	120		
Thallium, total 7440-28-0 E420 0.0001 mg/L 1 mg/L 94.8 80.0 120 Thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	103	80.0	120		
Thorium, total 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 94.6 80.0 120 Fin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	94.8	80.0	120		
Tin, total 7440-31-5 E420 0.0001 mg/L 0.5 mg/L 102 80.0 120	Thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	94.6	80.0	120		
	Tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	102	80.0	120		

Page	:	11 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	v Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 1469033) - conti	nued									
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	89.6	80.0	120		
Tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	96.4	80.0	120		
Uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	93.3	80.0	120		
Vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	93.7	80.0	120		
Zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	92.1	80.0	120		
Zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	98.6	80.0	120		
Volatile Organic Compounds (QCLot:	1464486)									
Benzene	71-43-2	E611D	0.5	µg/L	100 µg/L	100.0	70.0	130		
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	100 µg/L	110	70.0	130		
Bromoform	75-25-2	E611D	0.5	µg/L	100 µg/L	94.5	70.0	130		
Chloroform	67-66-3	E611D	0.5	µg/L	100 µg/L	108	70.0	130		
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	100 µg/L	98.4	70.0	130		
Dichloromethane	75-09-2	E611D	1	µg/L	100 µg/L	109	70.0	130		
Ethylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	85.6	70.0	130		
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	100 µg/L	102	70.0	130		
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	98.0	70.0	130		
Toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	85.4	70.0	130		
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	100 µg/L	108	70.0	130		
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	100 µg/L	97.0	70.0	130		
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	101	70.0	130		
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	104	70.0	130		
Xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	94.7	70.0	130		

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water						Matrix Spike (MS) Report						
-					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample	ID Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nut	rients (QCLot: 1464084)											
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125			
Anions and Nut	rients (QCLot: 1464085)											
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Bromide	24959-67-9	E235.Br-L	0.491 mg/L	0.5 mg/L	98.2	75.0	125			
Anions and Nut	rients (QCLot: 1464086)											
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Chloride	16887-00-6	E235.CI-L	ND mg/L		ND	75.0	125			
Anions and Nut	rients (QCLot: 1464087)											
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Nitrate (as N)	14797-55-8	E235.NO3-L	2.45 mg/L	2.5 mg/L	98.0	75.0	125			
Anions and Nut	rients (QCLot: 1464088)						·					
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Nitrite (as N)	14797-65-0	E235.NO2-L	0.486 mg/L	0.5 mg/L	97.3	75.0	125			
Anions and Nut	rients (QCLot: 1464089)											
WP2413356-001	NIVERVILLE SPRUCE DRIVE 1 - RAW	Sulfate (as SO4)	14808-79-8	E235.SO4	96.2 mg/L	100 mg/L	96.2	75.0	125			
Anions and Nut	rients (QCLot: 1464814)											
WP2413333-003	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0920 mg/L	0.1 mg/L	92.0	75.0	125			
Organic / Inorga	anic Carbon (QCLot: 14	64241)										
WP2413356-002	NIVERVILLE SPRUCE DRIVE 2 - TREATED	Carbon, total organic [TOC]		E355-L	5.34 mg/L	5 mg/L	107	70.0	130			
Organic / Inorga	anic Carbon (QCLot: 14	64659)										
WP2413300-002	Anonymous	Carbon, dissolved organic [DOC]		E358-L	ND mg/L		ND	70.0	130			
Total Metals (Q	CLot: 1469033)											
WP2413345-003	Anonymous	Aluminum, total	7429-90-5	E420	0.189 mg/L	0.2 mg/L	94.4	70.0	130			
		Antimony, total	7440-36-0	E420	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		Arsenic, total	7440-38-2	E420	0.0215 mg/L	0.02 mg/L	108	70.0	130			
		Barium, total	7440-39-3	E420	ND mg/L		ND	70.0	130			
		Beryllium, total	7440-41-7	E420	0.0360 mg/L	0.04 mg/L	90.0	70.0	130			
		Bismuth, total	7440-69-9	E420	0.00968 mg/L	0.01 mg/L	96.8	70.0	130			
		Boron, total	7440-42-8	E420	0.085 mg/L	0.1 mg/L	84.9	70.0	130			
		Cadmium, total	7440-43-9	E420	0.00408 mg/L	0.004 mg/L	102	70.0	130			
		Calcium, total	7440-70-2	E420	ND mg/L		ND	70.0	130			
		Cesium, total	7440-46-2	E420	0.0107 mg/L	0.01 mg/L	107	70.0	130	·		

Page	:	13 of 14
Work Order	:	WP2413356
Client	:	Manitoba Conservation & Climate
Project	:	Niverville Spruce Drive - PWS 151.25

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample ID Client sample ID Analyte **CAS Number** Method Concentration Target MS Low High Qualifier Total Metals (QCLot: 1469033) - continued WP2413345-003 Chromium, total 7440-47-3 E420 0.0386 mg/L Anonymous 0.04 mg/L 96.4 70.0 130 ----E420 0.0189 mg/L 0.02 mg/L Cobalt, total 7440-48-4 94.5 70.0 130 ----Copper. total 7440-50-8 E420 0.0180 ma/L 0.02 ma/L 90.0 70.0 130 ----Iron. total 7439-89-6 E420 1.86 mg/L 2 mg/L 92.9 70.0 130 ----Lead, total E420 7439-92-1 0.0190 mg/L 0.02 mg/L 95.0 70.0 130 ----Lithium, total 7439-93-2 E420 0.0835 mg/L 0.1 mg/L 83.5 70.0 130 ----Magnesium, total 7439-95-4 E420 ND mg/L ND 70.0 130 --------Molvbdenum, total 7439-98-7 E420 0.0204 ma/L 0.02 ma/L 102 70.0 130 ----Nickel, total E420 0.0364 ma/L 7440-02-0 0.04 mg/L 90.9 70.0 130 ----Phosphorus, total 7723-14-0 E420 9.91 mg/L 70.0 10 mg/L 99.1 130 Potassium, total 7440-09-7 E420 ND mg/L 70.0 130 -----ND ----Rubidium, total 7440-17-7 E420 0.0205 ma/L 0.02 mg/L 102 70.0 130 ----Selenium, total 7782-49-2 E420 0.0404 mg/L 0.04 mg/L 101 70.0 130 ----Silicon, total E420 7440-21-3 ND mg/L ND 70.0 130 ---------Silver, total 7440-22-4 E420 0.00394 mg/L 0.004 mg/L 98.4 70.0 130 ----Sodium, total 7440-23-5 E420 ND mg/L ND 70.0 130 --------Strontium, total 7440-24-6 E420 ND ma/L ND 70.0 130 --------Sulfur, total 7704-34-9 E420 ND mg/L ND 70.0 130 E420 Tellurium, total 13494-80-9 0.0419 mg/L 130 0.04 mg/L 105 70.0 ----Thallium, total 7440-28-0 E420 0.00382 mg/L 0.004 mg/L 70.0 130 95.5 ----0.0218 mg/L Thorium, total 7440-29-1 E420 0.02 mg/L 109 70.0 130 ----Tin. total 7440-31-5 E420 0.0206 mg/L 0.02 mg/L 103 70.0 130 ----Titanium, total 7440-32-6 E420 0.0372 mg/L 0.04 mg/L 93.0 70.0 130 ----Tungsten, total 7440-33-7 E420 0.0197 mg/L 0.02 mg/L 98.6 70.0 130 ----Uranium, total 7440-61-1 E420 ND mg/L ND 70.0 130 --------Vanadium, total 7440-62-2 E420 0.102 mg/L 102 70.0 130 0.1 ma/L ----Zinc. total E420 7440-66-6 0.371 mg/L 0.4 mg/L 92.8 70.0 130 ----Zirconium, total 7440-67-7 E420 0.0400 mg/L 0.04 mg/L 99.9 70.0 130 Volatile Organic Compounds (QCLot: 1464486) WP2413269-001 71-43-2 E611D Anonymous Benzene 93.0 µg/L 100 µg/L 93.0 60.0 140 ----Bromodichloromethane 75-27-4 E611D 94.7 µg/L 100 µg/L 94.7 60.0 140 ____ Bromoform 75-25-2 E611D 86.3 µg/L 100 µg/L 86.3 60.0 140 Chloroform 67-66-3 E611D 94.2 µg/L 100 µg/L 94.2 60.0 140 ____ Dibromochloromethane 124-48-1 E611D 92.3 60.0 140 92.3 µg/L 100 µg/L ----E611D Dichloromethane 75-09-2 94.7 µg/L 100 µg/L 94.7 60.0 140 ----Ethylbenzene 100-41-4 E611D 88.8 µg/L 100 µg/L 88.8 60.0 140 ----1634-04-4 E611D 98.5 60.0 Methyl-tert-butyl ether [MTBE] 98.5 µg/L 100 µg/L 140 E611D Tetrachloroethylene 127-18-4 91.2 µg/L 100 µg/L 91.2 60.0 140 ____ 89.0 µg/L 100 µg/L Toluene 108-88-3 E611D 89.0 60.0 140 ----Trichloroethane, 1,1,1-71-55-6 E611D 93.6 µg/L 100 µg/L 93.6 60.0 140 ____ Trichloroethane, 1,1,2-79-00-5 E611D 93.4 µg/L 100 µg/L 93.4 60.0 140 ----Trichloroethylene 79-01-6 E611D 93.7 µg/L 100 µg/L 93.7 60.0 140 ____ E611D 140 Xylene, m+p-179601-23-1 204 µg/L 200 µg/L 102 60.0 ----95-47-6 E611D Xylene, o-96.4 µg/L 100 µg/L 96.4 60.0 140 ____

Page	:	14 of 14
Work Order	1:	WP2413356
Client	1	Manitoba Conservation & Climate
Project	1	Niverville Spruce Drive - PWS 151.25

					Chain of Custody Manitoba Drinkin	(COC) g Water S	vetome	R	egular Ser	vice (de	faul		Re	gula (is 5-	r Ser -7 Da	vice ays):
Office of Drin 14 Fultz Boule Canada R3Y (king Water vard, Winnipeg, M DL6	lanitoba,				, water 3	узсента	U	nless othe	rwise re	eque		1 2 3	Day, Day, Day,	, rusl , rusl , rusl	h / priority h / priority h / priority
Report to O	perator (email	PDF):	· · · · · · · · · · · · · · · · · · ·	Report to	Owner (email PDF)	:		Email	PDF copy to):						
Contact: R	yan Dyck		·	Contact:	Eric King			DWO		Adam F	reiling					
ddress: B	ox 267, Nivervil	le, MB R	0A1E0	Address:	Box 267, Niverville,	MB ROA1	E0	DWO	Address:	Box 400	0 #4 HV	VY 50	02, La	a <u>c d</u> u	u Bor	nnet, MB R
hone: (2	204) 388-4600			Phone:	(204) 388-4600	· · · · · · · · · · · · · · · · · · ·	·····	DWO	Phone:	(204) 37	71-3885					
mail: ry	/an@whereyou	belong.c	9; 	Email:	ericking@whereyou	belong.ca		DWO	Email:	Adam.F	reiling@)gov.	.mb.c	a		·
o	perations@whe	reyoube	iong.ca					Addit	ional Email:	Joern.N	luenster	@go	ov.mt	o.ca;		
	If an upda	ate in (Owner or Oper	ator conta	act informatio	n is requ	uired, pl	lease conta	act your	Drinki	ng Wa	ater	Of	.a, fice	er	•
Client / Pr	oject Inform	ation:	Lab:	4	Account:	Ag	ency Cod	e: 382 R	eport Type	e: EMS	(Lab-N	/WS	5)	Pro	ject	: DWQ-C
Deration N	ame: NIVER		DICE DRIVE DW											· · · ·		
		VILLE OF							1 A.							
Operation Co	ode: 151.25					Expe	ected Sam	ple Time:		۸.		ь Л	0	л	· · .	
Operation Co Operation ID	ode: 151.25): 42862					Expe	ected Sam	ple Time:		Αι	ugust	t-2	02	4		
Operation Co Operation ID Sampled by:	ode: 151.25 0: 42862 A	5 Actend	Remy 21			Expe	ected Sam	ple Time:		Αι	ugus	t-2	02	4		
Operation Co Operation ID Sampled by: DO 1	ode: 151.25 b: 42862 A: Plea NOT COPY	se reco	Rempel rd Free & Total C	hlorine resi Sample Ni	iduals for Distribution	Expe	ected Sam product S	ple Time: Sampling	ng Wate	Au	Igus	t-2	02	4		
Dperation Co Operation ID Sampled by:	ode: 151.25 b: 42862 A Plea NOT COPY	se reco	Remy 21 rd Free & Total C JSE this form. S	hlorine resi Sample Nu	iduals for Distribution of the second s	Expe	ected Sam product S he Offic	ple Time: Sampling :e of Drinki	ng Wate	Αι <u>r</u>	Igus ¹	t-2	02	4		
Deration Co Deration ID Sampled by: DO 1	ode: 151.25 b: 42862 A Plea NOT COPY (se reco	Renzel rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	iduals for Distribuumber are unio Drinking Water	Expe	ected Sam product S he Offic	ple Time: Sampling :e of Drinki	ing Wate	Αι <u>r</u>	lgus	t-2	02	4 MB-		
Deration Co Deration ID Sampled by: DO I	ode: 151.25 b: 42862 Plea NOT_COPY (se reco	Remodel rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	duals for Distrib umber are unio Drinking Water	Expe	ected Sam product S he Offic	ple Time: Sampling :e of Drinki	ng Wate	Αι <u>r</u>	Igus ¹	t-2	02 &	4 MB-VO	#	
Deration Co Operation ID Sampled by:	ode: 151.25 2: 42862 Plea NOT COPY (se reco	Rempiel PWS rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	iduals for Distribu umber are unio Drinking Water	Expe	ected Sam product S he Offic	ple Time: Sampling :e of Drinki	ng Wate	Αι <u>r</u>	Igne	t-2 МВ-СН-Р	02 MB-ME	4 МВ-VOC-Р	# of (
Deration Co Deration ID Sampled by: DO I	ode: 151.25 2: 42862 Plea NOT COPY (se reco	Reme 21 rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	iduals for Distribu umber are unio Drinking Water	Expe	ected Sam product S he Offic	ple Time: Sampling :e of Drinki	ng Wate	Au r	Jgus ¹	t-2 MB-CH-PWS	MB-MET-T	4 MB-VOC-PWS	# of Con	
Deration Co Deration ID Sampled by: DO I	ode: 151.25 0: 42862 Plea NOT_COPY (se reco	Reme 21 rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	iduals for Distrib umber are unio Drinking Water	Expe	product Sam	sampling Sampling Sample Date	ng Wate	Au <u>r</u>	Jgus	t-2 MB-CH-PWS-V2	MB-MET-T-CC	4 MB-VOC-PWS-V2	# of Contair	
Operation Co Operation ID Sampled by: DO I	ode: 151.25 2: 42862 Plea NOT COPY of Station Number	se reco or RE-I	Remp 21 rd Free & Total C JSE this form. S and prov	hlorine resi Sample Nu vided by D	iduals for Distribu umber are unio Drinking Water	Expe	roduct S he Offic Total Chlorine (mg/L)	sample Time: Sampling of Drinki Sample Date	ng Wate	Au r Sample Matrix	Jgus Sample Type	мв-сн-рws-v2013	MB-MET-T-CCMS	4 MB-VOC-PWS-V2013	# of Containers	
Operation Co Operation ID Sampled by: DO I Sample Number 2408AA5001	ode: 151.25 c: 42862 Plea NOT_COPY of Station Number MB050ED101	sample	Remper 21 rd Free & Total C JSE this form. S and prov identification e Spruce Drive 1 - Raw	hlorine resi Sample Nu vided by D	duals for Distribu umber are unio Drinking Water	Expe	roduct Sam	Sampling Sample Date dd-mmm-yyyy	ng Wate	Au r Sample Matrix 6	Jgus Sample Type	мв-сн-рws-v2013 ×	MB-MET-T-CCMS	4 MB-VOC-PWS-V2013 ×	# of Containers @	
Sample Number 2408AA5001	ode: 151.25 c: 42862 Plea NOT_COPY (Station Number MB050ED101 MB050ED102	Sample Nivervill	Remodel rd Free & Total C JSE this form. S and prov and prov e Spruce Drive 1 - Raw e Spruce Drive 2 - Treat	hlorine resi Sample Nu vided by D	duals for Distribuumber are unio	Expe	Total Chlorine (mg/L)	sample Date Sample Date dd-mmm-yyyy 29-May-202 26-May-202	ng Wate Sample Time hh:mm	Au sample Matrix 6 10	Jgus Sample Type 1	мв-сн-рws-v2013 × ×	MB-MET-T-CCMS	4 MB-VOC-PWS-V2013 ×	# of Containers (a) 4	

Environmental Division Winnipeg Wink Order Reference		
Failure to complete all portions of this Mip2413000	Sample Matrix: 6-Raw Water, 9-Dist	ributed Water, 10-Treated Water
Please fill in this form LEGIBLY.	Sample Type: 1-Grab Sample	
By the use of this form the user acknowle For ALL other testing, please use Laborate	Conditions as specified by the Laboratory.	MAT
Relinquished By:	Validated By (lab use only): Sample Condition (lab use only)	Date & Time: 9:4/2 Mm
(lab use only)	Temperature Samples Received in	Good Condition?

A REAL HERMORE AND A DOWN

Client: N. S.	Drive		- <u>1997 - 200 - 200</u> - 200 - 2]
cheque Enclosed - 1 CoC	Yes	No]
Prioricy/Eme rge na traduited (hinde one)	Yes	No		
îme Sensitive Handline (Line Information)	Yes	No		
Matrix (circle one	Water Soil/solid	Air Biota	Other	1
of Botiles receiv.				
reen/White 3X11/mp	Yellow/Black			
urple/White 9 X100	Light blue/White			
/arm red/White 3 x100	Orange/Black			
ark Green/White	Dark Blue/White	1× 100m	-NB	$\lambda \chi$
			~ ~ ~	•

Login Che N/A Yes Received date/time Project/PO/LSD ٦, Quote/Office match Sample IDs/Descript Sample Date/lime Sales Items as per C Express Due Dates Client due date mat ALS Due date Client recipient ema Guidelines/threshold added 👘 🌮 Billing/payment receuled Eleid data entered -Sub-contracting For 1.000 Printed والقاربة والمحارث والم SUBCO/Chromatogr added to client conta 201 required analysis Are sub-samples reaand the second Has a SIF been subm for this WO? Has the SIF been resc La seta a summer

WP-FM-06095-01 Sample Fills in Minimum Form 20 Nov 2023 AGN/SQK Page 1 of 1

yns it you haw i verified the following:

......

axyont